Özet

淀粉样蛋白纤维蛋白的相互作用和脑线粒体的膜渗透

Published: September 28, 2019
doi:

Özet

这里提供了一个协议,用于研究从不同组织和大脑不同区域分离的来自不同组织和不同区域的线粒体的不同肽和蛋白质的原生形态、前纤维和成熟的淀粉样纤维之间的相互作用。

Abstract

越来越多的证据表明,膜渗透,包括线粒体等内膜,是神经退行性疾病淀粉样体性引起的毒性的常见特征和主要机制。然而,大多数描述膜中断机制的报告都基于磷脂模型系统,而直接针对生物膜水平发生的事件的研究很少见。本文介绍了一个模型,用于研究膜层淀粉样蛋白毒性机制。对于线粒体隔离,密度梯度培养基用于获得以最小的骨髓污染获得制剂。线粒体膜完整性确认后,研究β-核糖核酸、牛胰岛素和母鸡蛋白溶解酶(HEWL)与大鼠脑线粒体(作为体外生物模型)产生的淀粉样纤维蛋白的相互作用。结果表明,用纤维束体处理脑线粒体可引起不同程度的膜渗透和ROS含量增强。这表明淀粉样纤维蛋白和线粒体膜之间的结构相关相互作用。建议淀粉样纤维的生物物理特性及其与线粒体膜的具体结合,可以解释其中一些观测结果。

Introduction

淀粉样蛋白相关疾病,称为淀粉样蛋白,构成由不同组织和器官中不溶性蛋白质沉积的出现所定义的一大群疾病1,2。其中,神经退行性疾病是蛋白质聚集出现在中枢或周围神经系统2中最常见的形式。虽然已经提出一些机制参与淀粉样粒体的毒性3,越来越多的证据表明细胞膜中断和渗透作为淀粉样蛋白病理学的主要机制4, 5.除血浆膜外,内部细胞器(即线粒体)也可能受到影响。

有趣的是,新的证据表明线粒体功能障碍在神经退行性疾病的发病机制中起着关键作用,包括阿尔茨海默氏症和帕金森病6,7。根据这个问题,许多报告表明淀粉样蛋白β-肽、β-核糖核酸、亨廷顿蛋白和ALS相关突变SOD1蛋白与线粒体8、9、10的结合和积累。 11.淀粉样粒体渗透膜的机制被认为是通过离散通道(孔)的形成和/或通过非特异性洗涤剂状机制5、12、 13.值得注意的是,这些结论大多基于涉及磷脂模型系统的报告,而直接针对生物膜中发生的事件的研究很少见。显然,这些人造脂质双层不一定反映生物膜的内在特性,包括线粒体,线粒体是异质结构,由各种各样的磷脂和蛋白质组成。

在本研究中,从大鼠大脑中分离的线粒体被用作体外生物模型,以检查β-核糖核酸(作为淀粉样蛋白)、牛胰岛素(作为模型肽显示的淀粉样纤维素)的破坏性影响。与注射局部淀粉样蛋白病有关的人类胰岛素的重要结构同源性,以及母鸡蛋白液化酶(HEWL;作为研究淀粉样蛋白聚集的常见模型蛋白)。然后通过观察线粒体麻化脱氢酶(MDH)(位于线粒体基质)和线粒体活性氧的释放,研究淀粉样纤维诱导的线粒体膜的相互作用和可能的损害物种(ROS)增强。

Protocol

所有动物实验均按照德黑兰大学医学研究所动物护理和使用委员会(IACUC)进行。通过锐化断头刀刃和采用果断和迅速的叶片运动,尽最大努力尽量减少对大鼠的痛苦和有害影响。 1. 大脑均质化和线粒体隔离 注:所有线粒体隔离试剂均根据西姆斯和安德森14号制备。 为线粒体隔离准备缓冲液 准备 100 mM Tris-HCl 溶液:重量为 …

Representative Results

该协议描述了一个模型,用于研究淀粉样纤维蛋白与大鼠脑线粒体作为体外生物模型的相互作用。对于线粒体制剂,15%(v/v)密度梯度培养基用于去除骨髓,作为脑组织的主要污染14。如图1A所示,在30,700 x g处离心产生了两个不同的物质带,即骨髓(作为波段1的主要成分)和带2,它们含有丰富的线粒体分数。 <p class=…

Discussion

大量的实验结果支持了纤维细胞聚集体细胞毒性与其与生物膜4、5相互作用和渗透的能力显著相关的假设。然而,大多数数据都基于人工脂质双层,不一定反映生物膜的内在特性,生物膜是具有多种磷脂和蛋白质的异构结构。本文以脑线粒体作为体外生物膜,介绍了一个在膜水平上研究纤维集体细胞毒性的模型。

在实验中,重要的?…

Açıklamalar

The authors have nothing to disclose.

Acknowledgements

这项工作得到了伊朗赞詹基础科学高级研究所研究理事会的资助。

Materials

2′,7′-Dichlorodihydrofluorescein diacetate Sigma 35845
Ammonium sulfate Merck 1012171000
Black 96-well plate Corning
Black Clear-bottomed 96-well plate Corning
Bovine insulin Sigma I6634
Bovine Serum Albumin (BSA) Sigma A2153
BSA essentially fatty acid-free Sigma A6003
Centrifuge Sigma
Crystal clear sealing tape Corning
CuSO4 Sigma 451657
Dialysis bag (cut off 2 KDa) Sigma D2272
Dounce homogenizer Potter Elvehjem
EDTA Sigma E9884
Fluorescence plate reader BioTek
Fluorescence spectrophotometer Cary Eclipse VARIAN
Folin Merck F9252
Glycine Sigma G7126
Guillotine Made in Iran
HCl Merck H1758
Hen Egg White Lysozyme (HEWL) Sigma L6876
Na2CO3 Sigma S7795
NaH2PO4 Sigma S7907
NaOH Merck S8045
Oxaloacetate Sigma O4126
Percoll GE Healthcare
Phosphate Buffer Saline (PBS) Sigma CS0030
PMSF Sigma P7626
Potassium sodium tartrate Sigma 217255
Quartz cuvette Sigma
Spectrophotometer analytik jena SPEKOL 2000 model
Succinate Sigma S2378
Sucrose Merck 1076871000
Thermomixer Eppendorph
Thioflavin T Sigma T3516
Tris-HCl Merck 1082191000
Triton X-100 Sigma T9284
Tryptone QUELAB
Water bath Memmert
Yeast Extract QUELAB
β-NADH Sigma N8129

Referanslar

  1. Merlini, G., Bellotti, V. Molecular mechanisms of amyloidosis. New England Journal of Medicine. 349, 583-596 (2003).
  2. Berg, I. . Modeling amyloid disease in Drosophila melanogaster, Linköping Studies in Science and Technology Dissertation No. 1320. , (2010).
  3. Kagan, B. L., Uversky, V. N., Fink, A. L. Protein aggregation, ion channel formation, and membrane damage. Protein Misfolding, Aggregation, and Conformational Diseases. , 223-236 (2006).
  4. Demuro, A., et al. Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. The Journal of Biological Chemistry. 280, 17294-17300 (2005).
  5. Kayed, R., et al. Permeabilization of lipid bilayers is a common conformation-dependent activity of soluble amyloid oligomers in protein misfolding diseases. The Journal of Biological Chemistry. 279, 46363-46366 (2004).
  6. Manczak, M., Park, B. S., Jung, Y., Reddy, P. H. Differential expression of oxidative phosphorylation genes in patients with Alzheimer’s disease: implications for early mitochondrial dysfunction and oxidative damage. Neuromolecular Medicine. 5, 147-162 (2004).
  7. Vila, M., Ramonet, D., Perier, C. Mitochondrial alterations in Parkinson’s disease: new clues. Journal of Neurochemistry. 107, 317-328 (2008).
  8. Petersen, C. A. H., et al. The amyloid β-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. Proceedings of the National Academy of Sciences of the United States of America. 105, 13145-13150 (2008).
  9. Devi, L., Raghavendran, V., Prabhu, B. M., Avadhani, N. G., Anandatheerthavarada, H. K. Mitochondrial import and accumulation of α-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. The Journal of Biological Chemistry. 283, 9089-9100 (2008).
  10. Costa, V., Scorrano, L. Shaping the role of mitochondria in the pathogenesis of Huntington’s disease. EMBO Journal. 31, 1853-1864 (2012).
  11. Vande Velde, C., Miller, T. M., Cashman, N. R., Cleveland, D. W. Selective association of misfolded ALS-linked mutant SOD1 with the cytoplasmic face of mitochondria. Proceedings of the National Academy of Sciences of the United States of America. 105, 4022-4027 (2008).
  12. Kagan, B. L., Azimov, R., Azimova, R. Amyloid peptide channels. The Journal of Membrane Biology. 202, 1-10 (2004).
  13. Lashuel, H. A., Hartley, D., Petre, B. M., Walz, T., Lansbury, P. T. Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature. 418, 291 (2002).
  14. Sims, N. R., Anderson, M. F. Isolation of mitochondria from rat brain using Percoll density gradient centrifugation. Nature Protocols. 3, 1228-1239 (2008).
  15. Ghobeh, M., et al. Interaction of Aβ (25-35) Fibrillation Products with Mitochondria: Effect of Small-Molecule Natural Products. Peptide Science. 102, 473-486 (2014).
  16. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J. Protein measurement with the folin phenol reagent. The Journal of Biological Chemistry. 193, 265-275 (1951).
  17. Sottocasa, G. L., Kuylenstierna, B., Ernester, L., Bergstrand, A. Separation and some enzymatic properties of the inner and outer membrane of rat liver mitochondria. Methods in Enzymology. 10, 448-463 (1967).
  18. Hoyer, W., et al. Dependence of a-Synuclein Aggregate Morphology on Solution Conditions. Journal of Molecular Biology. 322, 383-393 (2002).
  19. Weinreb, P. H., et al. NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biyokimya. 35, 13709-13715 (1996).
  20. Porter, R. R. Partition chromatography of insulin and other proteins. The Biochemical Journal. 53, 320-328 (1953).
  21. Goldberg, M. E., Rudolph, R., Jaenicke, R. A kinetic study of the competition between renaturation and aggregation during the refolding of denatured reduced egg white lysozyme. Biyokimya. 30, 2790-2797 (1991).
  22. Young, T. A., Cunningham, C. C., Bailey, S. M. Reactive oxygen species production by the mitochondrial respiratory chain in isolated rat hepatocytes and liver mitochondria: studies using myxothiazol. Archives of Biochemistry and Biophysics. 405, 65-72 (2002).
  23. Meratan, A. A., Ghasemi, A., Nemat-Gorgani, M. Membrane integrity and amyloid cytotoxicity: a model study involving mitochondria and lysozyme fibrillation products. Journal of Molecular Biology. 409, 826-838 (2011).
  24. Katebi, B., Mahdavimehr, M., Meratan, A. A., Ghasemi, A., Nemat-Gorgani, M. Protective effects of silibinin on insulin amyloid fibrillation, cytotoxicity and mitochondrial membrane damage. Archives of Biochemistry and Biophysics. 659, 22-32 (2018).
  25. Fink, A. L. The aggregation and fibrillation of alpha-synuclein. Accounts of Chemical Research. 39, 628-634 (2006).
  26. Diraviyam, K., Stahelin, R. V., Cho, W., Murray, D. Computer modeling of the membrane interaction of FYVE domains. Journal of Molecular Biology. 328, 721-736 (2003).
  27. Van Rooijen, B. D., Claessens, M., Subramaniam, V. Lipid bilayer disruption by oligomeric α-synuclein depends on bilayer charge and accessibility of the hydrophobic core. Biochimica et Biophysica Acta. 1788, 1271-1278 (2009).
  28. Kourie, J. I., Henry, C. L. Ion channel formation and membrane-linked pathologies of misfolded hydrophobic proteins: the role of dangerous unchaperoned molecules. Clinical and Experimental Pharmacology & Physiology. 29, 741-753 (2002).
  29. Bucciantini, M., et al. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature. 416, 507-511 (2002).
  30. Bolognesi, B., et al. ANS binding reveals common features of cytotoxic amyloid species. ACS Chemical Biology. 5, 735-740 (2010).
  31. Posse, E., De Arcuri, B. F., Morero, R. D. Lysozyme interactions with phospholipid vesicles: relationships with fusion and release of aqueous content. Biochimica et Biophysica Acta. 1193, 101-106 (1994).
  32. Roqanian, S., et al. Polyphenols protect mitochondrial membrane against permeabilization induced by HEWL oligomers: possible mechanism of action. International Journal of Biological Macromolecules. 103, 709-720 (2017).
  33. Ulmer, T. S., Bax, A., Cole, N. B., Nussbaum, R. L. Structure and dynamics of micelle-bound human alphasynuclein. The Journal of Biological Chemistry. 280, 9595-9603 (2005).
  34. Stockl, M., Fischer, P., Wanker, E., Herrmann, A. Alpha-synuclein selectively binds to anionic phospholipids embedded in liquid-disordered domains. Journal of Molecular Biology. 375, 1394-1404 (2008).
  35. Devi, L., et al. Mitochondrial import and accumulation of α-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. The Journal of Biological Chemistry. 283, 9089-9100 (2008).
  36. Ghio, S., Kamp, F., Cauchi, R., Giese, A., Vassallo, N. Interaction of α-synuclein with biomembranes in Parkinson’s disease-role of cardiolipin. Progress in Lipid Research. 61, 73-82 (2016).
  37. Petersen, C. A. H., et al. The amyloid β-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. Proceedings of National Academy of Sciences of the United States of America. 105, 13145-13150 (2008).
  38. Costa, V., Scorrano, L. Shaping the role of mitochondria in the pathogenesis of Huntington’s disease. EMBO Journal. 31, 1853-1864 (2012).
  39. Vande Velde, C., Miller, T. M., Cashman, N. R., Cleveland, D. W. Selective association of misfolded ALS-linked mutant SOD1 with the cytoplasmic face of mitochondria. Proceedings of National Academy of Sciences of the United States of America. 105, 4022-4027 (2008).
  40. Oladzad Abbasabadi, A., et al. Disruption of mitochondrial membrane integrity induced by amyloid aggregates arising from variants of SOD1. International Journal of Biological Macromolecules. 61, 212-217 (2013).

Play Video

Bu Makaleden Alıntı Yapın
Zadali, R., Ghareghozloo, E. R., Ramezani, M., Hassani, V., Rafiei, Y., Chiyaneh, S. M., Meratan, A. A. Interactions with and Membrane Permeabilization of Brain Mitochondria by Amyloid Fibrils. J. Vis. Exp. (151), e59883, doi:10.3791/59883 (2019).

View Video