The goal of the protocol is to demonstrate the techniques used to investigate viral disease by isolating and quantifying Zika virus, from multiple organs in a mouse following infection.
The methods being presented demonstrate laboratory procedures for the isolation of organs from Zika virus infected animals and the quantification of viral load. The purpose of the procedure is to quantify viral titers in peripheral and CNS areas of the mouse at different time points post infection or under different experimental conditions to identify virologic and immunological factors that regulate Zika virus infection. The organ isolation procedures demonstrated allow for both focus forming assay quantification and quantitative PCR assessment of viral titers. The rapid organ isolation techniques are designed for the preservation of virus titer. Viral titer quantification by focus forming assay allows for the rapid throughput assessment of Zika virus. The benefit of the focus forming assay is the assessment of infectious virus, the limitation of this assay is the potential for organ toxicity reducing the limit of detection. Viral titer assessment is combined with quantitative PCR, and using a recombinant RNA copy control viral genome copy number within the organ is assessed with low limit of detection. Overall these techniques provide an accurate rapid high throughput method for the analysis of Zika viral titers in the periphery and CNS of Zika virus infected animals and can be applied to the assessment of viral titers in the organs of animals infected with most pathogens, including Dengue virus.
Zika virus (ZIKV) is an arbovirus that belongs to the flaviviridae family, which includes important neuroinvasive human pathogens such as Powassan virus (POWV), Japanese encephalitis virus (JEV), and West Nile virus (WNV)1. Following its isolation and identification, there have been periodic reports of human ZIKV infections in Africa and Asia2,3,4,5, and epidemics within Central and South America (reviewed in reference6). However, it was not until recently that ZIKV was thought to cause severe disease7. Now there are thousands of cases of neurological disease and birth defects linked to ZIKV infections. The rapid emergence of ZIKV has prompted many questions relating to: why there is an increase in disease severity, what is the immunological response to ZIKV infection and are there viral and/or immune mediated pathologies linked to the increase in neurological manifestations and birth defects. There is now a rush to understand the central nervous system (CNS) related disease associated with ZIKV as well as the need to rapidly test the efficacy of the antivirals and vaccines against ZIKV. It is against this backdrop that we have developed methods for the rapid analysis of ZIKV titers in both the periphery and CNS using a ZIKV-specific focus forming assays (FFA).
Small animal models are important for understanding disease progression and for the early evaluation of vaccines, therapeutics, and anti-virals. We have established small animal models for the study of arbovirus disease by using various mouse strains to model human infection and protection against viral pathogens8,9,10,11,12,13,14,15,16,17,18,19,20,21,22. Using this prior experience, we began to modify techniques used for the assessment of WNV and Dengue virus, a related flavivirus for the assessment of ZIKV titer in both peripheral organs as well as the CNS21,23,24. The advantages of these methods over other assays are: 1) that they combine the ability to harvest both peripheral and CNS organs for the analysis; 2) the methods are adaptable for flow cytometry, for measurements of innate and adaptive immune responses, along with viral titers on the same animal in the same organ; 3) the harvest technique is adaptable for histological analysis; 4) the ZIKV FFA is a rapid high throughput method for viral titer analysis; and 5) these methods can be applied to the assessment of viral titers in the organs of animals infected with most pathogens25.
All procedures of the present study are in accordance with the guidelines set by the St. Louis University Animal Care and Use Committee. SLU is fully accredited by the Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC).
1. Organ Isolation
NOTE: The virus is not stable at room temperature (RT) so the number of animals harvested at one time must be planned carefully to preserve viral titers.
2. Organ Homogenization
3. Zika Virus Focus Forming Assay26
NOTE: It is important to include a no virus control and a positive control. The positive control is a dilution series of a virus stock with a known concentration. Not all controls need to be on the same plate, but as the assay becomes larger than 5 plates, more controls should be added, and spread out among plates. Take care not to scratch the monolayer with either the pipet tips or by vigorous washing. Multiple organs can be titered on the same day or on different days. But an individual organ should not be titered over multiple days because different assay conditions can impact viral titer. It is strongly recommended to run an individual organ on a single day.
To evaluate ZIKV titers using the protocol described above Ifnar1-/- mice were infected with ZIKV (PRVABC59) via subcutaneous (SC) injection to the footpad. Here, the administration of 1 x 105 FFU of ZIKV to 8-12 week old Ifnar1-/- mice SC is not lethal but the virus can replicate in both the periphery and CNS. This dose and route are used to study host pathogen immune responses and pathogenicity. Administration of 1 x 105 FFU of ZIKV to a 8-12 week old Ifnar1 -/- mouse intravenous (IV) injection is between 80 to 100% lethal, with the animal succumbing to infection between 8 to 14 days post virus injection. We routinely use this administration route to determine efficacy of antivirals and therapeutics, as well as preclinical vaccine candidate testing.
Four 10-12 week-old Ifnar1-/- mice were infected with 1 x 105 FFU of ZIKV SC and spleens, livers, kidneys, spinal cords and brains were harvested four days post infection by the methods detailed above (Figure 1). The amount of ZIKV in the tissues was assayed by focus forming assay (FFA) using Vero cells in a 96 well format as described above. Using the FFA, tissue viral load is expressed as focus forming units (FFU) per g of tissue. Similar to what was observed in a previous study of ZIKV infection of Ifnar1-/- 26, we saw viremia following a sampling of viral titers in different organs four days post ZIKV infection. These results indicate that the methods used for organ harvest and tittering by focus forming assay can be used to detect titer in both peripheral organs and the CNS within the same animal. Interestingly, we did not expect to see high viral titers in both the periphery and the CNS four days post infection in the Ifnar1-/- mice because all of the Ifnar1-/- survive ZIKV infection with this dose and route. We are continuing to explore this observation to understand how ZIKV can continue to replicate in the CNS of Ifnar1-/- without causing lethality.
When performing the focus forming assay (FFA), there are multiple technical mistakes an investigator can make which will result in suboptimal FFA results. The most common mistakes are: 1) organ toxicity; 2) vigorous pipetting; 3) fiber contamination; and 4) incorrect cell plating density. We discuss each of these issues below and illustrate the outcome in Figure 2. One of the more common issues that occurs with both the FFA and plaque assay is organ toxicity (Figure 2A red arrow). We believe organ toxicity is driven by the high concentration of intracellular components released during organ homogenization. Organ toxicity varies based upon the organ and is seen in organs harvested from uninfected animals, with the liver being the most toxic and the spleen the least. Toxicity is reduced as the organ is serially diluted on the FFA plate. However, toxicity alters the sensitivity of the assay resulting in a change in the limit of detection. As shown in Figure 2A if the viral titer in the organ is lower than the toxicity the FFA will not be able to accurately record the viral titers. Figure 2B illustrates toxicity in wells a1-4, but the viral titer is sufficiently high to overcome organ toxicity as seen in wells b3 and b4. To overcome this limitation in the FFA, we also perform quantitative real-time PCR on organ titer samples. In Figure 2C, we illustrate several common technical errors. Vigorous pipetting or washing can remove the monolayer (Figure 2C, *), if this occurs in wells with foci that data will be lost leading to inaccurate reporting of titer results. Fibers or hairs, that are present in lab bench absorbent paper can contaminate individual wells (Figure 2C, $) this can cause significant errors if using an automated counting program. While most automated counting programs have fiber exclusion options, we have not found it to be highly effective at excluding fibers from the analysis. The solution to this is to manually count the wells, which can be very time consuming and is not practical for the analysis of large assays. Cell density is another issue which can dramatically impact the success of a focus forming assay (Figure 2D). If cells are not at the right density at the start of the assay the number and size of the spots will be impacted. As shown in Figure 2D, columns 1-3, cells at approximately 60% confluency at the start of the assay compared to cells plated at 90% confluency columns 4-6 will dramatically impact the focus forming assay. To overcome this obstacle small pilot assays should be run to optimize cell density and fixation times as individual laboratory conditions will impact the success for the assay.
For studies when different groups of infected animals are compared, the statistical analysis that is performed is dependent on the distribution of data. Either, parametric or nonparametric tests are used to assess statistical significance. For parametric tests, ANOVA is utilized to detect overall effect, and individual treatment groups will be compared using Dunn’s test. In case the distribution of data does not satisfy requirements for parametric analysis, nonparametric tests are employed. The Kruskal-Wallis test is used to detect the overall treatment effect, and the Mann-Whitney U test is used to perform pair-wise comparisons. For the results present here we did not compare the animals with a second data set harvested at this time point so we did not perform statistical analysis on the data set shown.
Figure 1: Viral replication in the periphery and CNS. Viral burden in the peripheral and CNS tissues after IFNAR1-/- mice are given 1×105 FFU of ZIKV SC. On day 4 (n = 4 per group) post-infection organs were harvested, snap frozen, weighed, and homogenized. Levels of virus were quantified by focus forming assay. The limit of detection is 100-500 FFU/gram based upon organ. Data is shown as Log10 focus-forming unit per gram of tissue. Please click here to view a larger version of this figure.
Figure 2: Common Difficulties with the Focus-forming assay. For all the focus forming assays shown viral antigen was detected with an anti-flavivirus MAb, followed by immunoperoxidase staining (purple). (A) Vero cells were grown to a 90% confluency and infected with a 10-fold serial dilution of supernatant from liver harvested from a 8 week old C57BL/6 mouse, IV infected with 5 x 107 FFU of ZIKV 4 days previously. The red arrow indicates the highest or “neat” concentration of liver supernatant demonstrating the toxicity at this concentration. (B) Vero cells were grown to a 90% confluency and infected with a 10 fold dilution of supernatant from ZIKV infected kidney cells. In this case samples in column 1 and 2 are from a C57BL/6 mouse and col 3 and 4 are from a Ifnar1-/-. Both mice were 8 weeks old infected with 1 x 105 FFU of ZIKV IV and sacrificed 4 days post infection. Similar to (A) there is some toxicity seen at the highest concentration (row a) but the viral titers observed in column 3 and 4 overcome the limit of detection issues allowing for accurate titers to be detected. (C) Vero cells were plated. The selected wells show to common technical errors. The * demonstrates an area where the monolayer was removed due to vigorous pipetting. The $ is placed over a well where a fiber can be seen. (D) Vero cell concentration affects the sensitivity of the assay. In this plate Vero cells were plated at 1.0 x 104 cells/well in column 1-3 and 3.0 x 104 Vero-WHO cells/well in column 4-6. Then the plate was infected with 10-fold dilutions of ZIKV PRVABC59 stock. The highest viral concentration samples are in row A and diluted down, with each row representing a 10-fold dilution. Please click here to view a larger version of this figure.
ZIKV infection can cause a neurological disease therefore the current animal models to study pathogenesis, immune responses and protective efficacy of vaccines and antivirals need to focus on viral control within the CNS. One of the challenges in focusing on CNS disease is that it often comes at the expense of studying peripheral infection. The organ isolation methods proposed here focuses on the need to rapidly evaluate ZIKV infection in both the periphery and the CNS in order to assess CNS mediated ZIKV associated disease and establish a model for preclinical testing of antivirals, therapeutic and vaccines. An added benefit of this technique is that it also allows for a high degree of flexibility, including the combined study of immunological responses to ZIKV or histological analysis of infection. This technique, is not restricted to just ZIKV but can also be universally applied to study a range of host-pathogen interactions, including flaviviruses such as Dengue virus21, orthopoxviruses like monkeypox and ectromelia. The considerations and drawbacks to this technique of harvesting focus mainly of the capabilities of the experimenter. As ZIKV is not stable for long periods of time at room temperature, the amount of time it takes to harvest organs after perfusion can significantly impact the quality of the results. For most experiments that we have performed, we compare viral titers from mice treated with two conditions, so we focus our efforts on consistency of time between organ harvests not on speed. In this way the same person performs the same procedure for the whole experiment to maintain consistency. The other major consideration with this procedure is safety, we have readily performed these methods with BSL-2 (ZIKV, Dengue virus) and BSL-3 (WNV, Chikungunya virus) pathogens. It is very important to perform all procedures in a clean, well maintained, certified biosafety cabinet with disinfectant.
An FFA parallels the plaque assay, except that it uses peroxidase immunostaining to identify foci of infected cells, rather than plaques. My laboratory as well as multiple other laboratories have now successfully switched to using FFAs for all our tittering experiments11,14,15,17,26,27,28. The FFA has multiple advantages over the traditional plaque assay: a) The FFA is faster, requiring a shorter incubation compared to a plaque assay, b) it is also higher-throughput, being performed in 96-well plates. The 96 well plate format can also accommodate smaller volumes of starting material. In addition, c) the FFA is compatible with the use of an automated plate washer and automated spot counter, greatly reducing the labor and time required for the assay. The FFA has more steps after infection, but d) with the use of multichannel pipets, or even a pipetting robot, the timing for most of the assay steps after fixation are flexible and the assay can be paused overnight or for longer. Finally, e) it may be especially useful for virus strains that do not form clear plaques, such as Dengue virus. One disadvantage of the FFA is that it requires specific antibodies to detect virus-infected cells, which may be confounding when considering diverse virus strains or mutant viruses. For the FFA as with the plaque assay the density of the cell monolayer at the time of infection is critical for the success of the assay. Cells should be used at higher confluence for a FFA compared to a plaque assay, due to the shortened length of time before fixation. As the FFA is higher throughput, more cost effective and faster than the traditional plaque assay it allows my laboratory to rapidly analyze data for studying emerging infectious diseases. The FFA is more cumulatively more cost effective for several reasons. Although antibodies are more expensive than neutral red or crystal violet, we are able to analyze more samples per plate which eliminates the cost difference. In terms of labor allocation automated spot counting and easy data entry for analysis limits labor costs and the ability to have a long-term image as a record is difficult to quantify. The future of this assay may be to move to a fluorescent-based foci for a readout as opposed to HRP. Quantitating fluorescent intensity along with spot number will extend the utility of the FFA beyond what is currently studied.
The authors have nothing to disclose.
Dr. Pinto is funded by a seed grant from the Saint Louis University School of Medicine and startup funds from Saint Louis University School of Medicine. Dr. Brien is funded by a K22AI104794 early investigator award from the NIH NIAID as well a seed grant from the Saint Louis University School. For all funded individuals the funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
1-bromo-3-chloropropane (BCP) | MRC gene | BP151 | |
10cc syringe | Thermo Fisher Scientific | BD 309642 | |
18G needle | Thermo Fisher Scientific | 22-557-145 | |
1cc TB syringe | Thermo Fisher Scientific | 14-823-16H | |
20cc syringe | Thermo Fisher Scientific | 05-561-66 | |
24 tube beadmill | Thermo Fisher Scientific | 15 340 163 | |
3.2 mm stainless steel beads | Thermo Fisher Scientific | NC9084634 | |
37C Tissue Culture incubator | Nuair | 5800 | |
4G2 antibody | in house | ||
96 well flat bottom plates | Midsci | TP92696 | |
96well round bottom plates | Midsci | TP92697 | |
Basix 1.5ml eppendorf tubes | Thermo Fisher Scientific | 02-682-002 | |
Concentrated Germicidal Bleach | Staples | 30966CT | |
CTL S6 Analyzer | CTL | CTL S6 Universal Analyzer | |
curved cutting scissors | Fine Science Tools | 14061-11 | |
Dulbecco’s Modified Eagle’s Medium – high glucose With 4500 mg/L glucose | MilliporeSigma | D5671 | |
Ethanol (molecular biology-grade) | MilliporeSigma | e7023 | |
Fetal Bovine Serum | MilliporeSigma | F0926-500ML | |
Forceps | Fine Science Tools | 11036-20 | |
Glacial acetic acid | MilliporeSigma | 537020 | |
Goat anti-mouse HRP-labeled antibody | MilliporeSigma | 8924 | |
HEPES 1 M | MilliporeSigma | H3537-100ML | |
Isopropanol (molecular biology-grade) | MilliporeSigma | I9516 | |
Ketamine/Xylazine cocktail | Comparative Medicine | ||
L-glutamine | MilliporeSigma | g7513 | |
Magmax RNA purification kit | Thermo Fisher Scientific | AM1830 | |
Methylcellulose | MilliporeSigma | M0512 | |
Microcentrifuge | Ependorf | 5424R | |
MiniCollect 0.5ml EDTA tubes | Bio-one | 450480 | |
o-ring tubes | Thermo Fisher Scientific | 21-403-195 | |
one step q RT-PCR mix | Thermo Fisher Scientific | 4392938 | |
Paraformaldehyde | Thermo Fisher Scientific | EMS- 15713-S | |
Phosphate Buffered Saline | MilliporeSigma | d8537-500ml | |
Proline multichannel pipettes | Sartorius | 72230/72240 | |
Proline single channel pipettes | Sartorius | 728230 | |
RNAse free water | Thermo Fisher Scientific | 10-977-023 | |
RNAzol BD | MRC gene | RB192 | |
Rocking Platform | Thermo Fisher Scientific | 11-676-333 | |
RPMI 1640 | Fisher | MT10040CV | |
Saponin | MilliporeSigma | s7900 | |
spoon/spatula | Fine Science Tools | 10090-17 | |
straight cutting scissors | Fine Science Tools | 14060-11 | |
Triton X-100 | MilliporeSigma | t8787 | |
True Blue Substrate | VWR | 95059-168 | |
Trypsin | MilliporeSigma | T3924-100ML |