We present a protocol to functionalize atomic force microscope (AFM) cantilevers with a single T cell and bead particle for immunological studies. Procedures to probe single-pair T cell-dendritic cell binding by AFM and to monitor the real-time cellular response of macrophages to a single solid particle by AFM with fluorescence imaging are shown.
Atomic force microscopy based single cell force spectroscopy (AFM-SCFS) is a powerful tool for studying biophysical properties of living cells. This technique allows for probing interaction strengths and dynamics on a live cell membrane, including those between cells, receptor and ligands, and alongside many other variations. It also works as a mechanism to deliver a physical or biochemical stimulus on single cells in a spatiotemporally controlled manner, thus allowing specific cell activation and subsequent cellular events to be monitored in real-time when combined with live-cell fluorescence imaging. The key step in those AFM-SCFS measurements is AFM-cantilever functionalization, or in other words, attaching a subject of interest to the cantilever. Here, we present methods to modify AFM cantilevers with a single T cell and a single polystyrene bead respectively for immunological studies. The former involves a biocompatible glue that couples single T cells to the tip of a flat cantilever in a solution, while the latter relies on an epoxy glue for single bead adhesion in the air environment. Two immunological applications associated with each cantilever modification are provided as well. The methods described here can be easily adapted to different cell types and solid particles.
Atomic force microscopy (AFM), a versatile tool, has found many applications in cell biology research1,2,3,4,5. Apart from its high-resolution imaging capability, the native force-probing feature allows biophysical properties of living cells to be investigated directly in situ at the single-cell level6,7. These include the rigidities of subcellular structures or even whole cells8,9,10,11,12, specific ligand/receptor binding strengths at the single-molecule level on the cell surface13, and adhesion forces between single-pairs of solid particles and cells or between two cells1,2,14,15. The latter two are often categorized as single-cell force spectroscopy (SCFS)16. Owing to the readily available cantilevers with various spring constant, the force range accessible to AFM is rather broad from a few piconewtons (pN) to micronewtons (µN), which adequately covers the entire range of cellular events involving forces from a few tens of pN, such as receptor-based single-molecule binding, to nN, such as phagocytic cellular events15. This large dynamic force range makes AFM advantageous over other force-probing techniques such as optical/magnetic tweezers and a biomembrane force probe, as they are more suitable for weak-force measurements, with force typically less than 200 pN17,18. In addition, AFM can function as a high-precision manipulator to deliver various stimuli onto single cells in a spatiotemporally defined manner4,19. This is desirable for the real-time single-cell activation studies. Combined with live-cell fluorescence imaging, the subsequent cellular response to the specific stimulus can be monitored concurrently, thus making AFM-based SCFS exceedingly robust as optical imaging providing a practical tool to probe cellular signaling. For instance, AFM was used to determine the strains required to elicit calcium transients in osteoblasts20. In this work, calcium transients were tracked fluorescently through calcium ratiometric imaging after the application of localized forces on cultured osteoblasts with an AFM tip. Recently, AFM was employed to stretching collagen fibrils on which hepatic stellate cells (HSC) were grown and this mechano-transduced HSC activation was real-time monitored by a fluorescent Src biosensor, whose phosphorylation as represented by the fluorescence intensity of the biosensor is correlated with HSC activation3.
In AFM-based SCFS experiments, proper functionalization of AFM cantilevers is a key step toward successful measurements. Since our research interest focuses on immune cells activation, we routinely functionalize cantilevers with particulate matters such as single solid particles that can trigger phagocytosis and/or strong immune responses4,14,15 and single T cells that can form an immune synapse with antigen presenting cells, such as activated dendritic cells (DC)2. Single solid particles are normally coupled to a cantilever via an epoxy glue in the air environment, whereas single T cells, due to their non-adhesive nature, are functionalized to a cantilever via a biocompatible glue in solution. Here, we describe the methods to perform these two types of cantilever modification and give two associated applications as well. The first application is to probe T cell/DC interactions with AFM-SCFS to understand the suppressive mechanism of regulatory T cells from the cell mechanics point of view. The second one involves combining AFM with live-cell fluorescence imaging to monitor the cellular response of macrophage to a solid particle in real-time to reveal the molecular mechanism of receptor-independent phosphatidylinositol 4,5-bisphosphate (PIP2)-Moesin mediated phagocytosis. The aim of this protocol is to provide a reference framework for interested researchers to design and implement their own experimental settings with AFM-based single-cell analysis for immunological research.
The mouse experiment protocol follows the animal care guidelines of Tsinghua University
1. Cantilever functionalization with single T cells
Figure 1: Schematic representation of adding a small drop of biocompatible glue onto the mounted cantilever. The cantilever is mounted via a clamping spring on the glass-block holder that is installed on the AFM scanning head (not drawn here). When the scanning head stands on a leveled surface, the cantilever is vertically oriented as shown in the drawing. About 2 µL biocompatible glue can be added to the tip of the cantilever with a micro-pipette. Please click here to view a larger version of this figure.
Figure 2: Experimental configuration of force-probing between a single T cell and DC. (A) Schematic drawing of the experimental configuration in which a T cell attached to the cantilever is brought to a DC grown on the substrate for force-probing. (B) Bright-field image of a T cell-functionalized cantilever and a DC. Scale bar, 20 µm. Please click here to view a larger version of this figure.
2. Cantilever functionalization with single polystyrene beads
Figure 3: Schematic representation of work flow for single-beads functionalization on the cantilever. Well separated micron-sized beads are prepared on the left side of the substrate and a tiny amount of epoxy glue is transferred onto the right side of the substrate through 3 successive gentle touches, resulting in 3 glue spots. Only the last spot with the least amount of the glue (indicated by a circle) is used to coat the very end of the cantilever. Approach the cantilever into the glue from the left and then move the cantilever backward once it is immersed into the glue to confine the glue at the very end of the cantilever. Bring the target bead underneath the cantilever and align them properly before making a firm contact (typically 2-5 nN) for the bead adhesion. When the bead is successfully functionalized on the cantilever, a new cantilever can be mounted to start a new functionalization cycle. Please click here to view a larger version of this figure.
Figure 4A shows typical force-distance curves from the binding interaction between single-T cell and single-DC in one approach-retract cycle. The light red curve is the extension curve and the dark red one is the retraction curve. Since the extension curve is typically used for indentation or rigidity-analysis, here only the retraction curve is concerned for cell adhesion. The minimum value (the green circle) in the curve gives a measure of the maximum adhesion force. The area under the curve (shaded area) represents the work (energy) required to separate the T cell from DC. Before a complete separation, sharp and stepwise rupture events are often observed. This is interpreted as membrane tethers being pulled out from the cell surface due to the strong binding at the cell/cell interface and then breaking discretely under the continuous pulling. The number, the height, and the length of the steps can be used to characterize the mechanical properties of the cell membrane21. For T cell-DC interactions, we are interested in the binding strength, thus only the maximum adhesion force is analyzed for each curve. Figure 4B compares adhesion forces between conventional T cell (Tconv)/DC and regulatory T cell (Treg)/DC. Tconv recognizes peptide antigens presented by antigen-presenting cells such as DC, whereas Treg is suppressor T cells that shut down Tconv -mediated immunity toward the end of an immune reaction. Clearly, Treg shows much stronger binding with DC than Tconv does (see Figure 4C). This is related to differential turnover rates of LFA-1 on the T cell surface between Treg and Tconv2. However, the exact mechanism that governs this is still under the investigation. The strong binding of Treg to DC is consistent with long binding times between Treg and DC observed in vivo22. More importantly, if a DC prebinds to a Treg, this DC cannot engage another Tconv forcefully (data not shown), leading to reduced T cell priming or immune suppression2. Thus, the force measurements on T cell/DC pairs provide new insight into the suppressive mechanism of Treg.
Figure 4: Treg cells show strong adhesion to DCs. (A) Typical force curves between a Tconv cell and a DC2.4. The light red curve is the extension curve and the dark red curve is the retraction curve. The minimum value of the dark red curve indicated by the green circle is the maximum adhesion force. The shaded area represents the energy required for complete separation between the two cells. (B) Force readings for T cells of indicated types interacting with DC2.4 cells. Each T-DC pair has at least 14 force readings and 5 independent DC-T cell pairs were probed for each cell type. Gray symbols are for Tconv cells (5); Dark blue, Treg cells (5). All data points were collected on the same day. C. Mean forces of T cells of indicated types interacting with DC2.4 cells. Error bars are SEM. ***, P < 0.001 (Student's t-test). Please click here to view a larger version of this figure.
Figure 5 shows how the fluorescently labeled phagocytic RAW264.7 cell responds to a single naked 6 µm polystyrene bead delivered by AFM4. The experimental scheme is shown in Figure 5A. PIP2 is labeled by PLCδ-PH-mCherry (red) and Moesin is labeled by EGFP (green) (See Figure 5B). Although they are both enriched at the bead/cell interface, the accumulation of Moesin to a great extent traced the intensity changes of PIP2 as indicated by the kymograph plots showing the intensity profiles as the function of time along the indicated white line in Figure 5C. Together with the fact that Moesin can bind to PIP2 via its FERM domain23, the result here suggests that upon engaging the bead, membrane PIP2 is first sorted at the contact site, which then induces membrane recruitment of Moesin whose ITAM domain then activates Syk-PI3K pathways, resulting in a phagocytic event. Thus, a new phagocytic pathway involving PIP2-Moesin-Syk axis has been identified and most importantly, it doesn't depend on any receptors on the cell membrane.
Figure 5: Moesin signaling is downstream of PIP2 sorting driven by the solid structure. (A) Schematic representation of fluorescence imaging of bead/cell contact with a bead delivered by AFM.(B) PH-PLCδ-mCherry and Moesin-EGFP were co-expressed in RAW264.7 cells. A polystyrene bead was used to contact the cell surface. Images were taken at a 6 s interval for 500 s. Scale bar, 5 µm. C. Localization of PIP2 and Moesin at the site of contact (indicated with "*") was examined with kymographs generated from the indicated line. This figure has been modified from4. Please click here to view a larger version of this figure.
AFM-based single-cell force spectroscopy has evolved to be a powerful tool to address the biophysical properties of living cells. For those applications, the cantilever needs to be functionalized properly in order to probe specific interactions or properties on the cells of interest. Here, the methods for coupling single T cell and single micron-sized bead to the tip-less cantilever are described respectively. To attach a single T cell to the cantilever, a biocompatible glue was chosen as cell adhesive. It is a specially formulated protein solution extracted from marine mussel. Its adhesivity originates from polyphenolic residues whose hydroxyl group can form hydrogen bonding with residues exposed on the cell surface in a nonspecific manner. This method of binding does not usually interfere with cellular functions of the bound cell. For proper adhesion, the conditions of the cells to be attached are also important. In case of freshly purified mouse CD4+T cells, they have to be first treated with human IL-2 overnight before they can be used for cantilever functionalization. Otherwise, they will undergo cell death rather quickly. If the cells are not in good conditions, even if they can be attached to the cantilever, they will very likely detach from the cantilever after only several cycles of force probing due to weaker adhesion strength, leading to a high failure rate of the force measurements. The downside of this biocompatible glue is that it is prone to oxidation, therefore the coupling procedure has to be finished as fast as possible, which can be challenging sometimes for operators. To reduce the oxidation of the biocompatible glue, it is highly recommended to prepare 30 µL aliquots in cryogenic vials filled with N2 gas from the stock solution in a N2 air environment and store them in liquid N2 for the best performance. Most importantly, this biocompatible glue proves to be inert to T cells unlike other protein-based adhesives such as fibronectin and lectins which can cause unintended receptor clustering in the cantilever/cell contact zone and thereby activate T cells24,25,26. Thus, the effects of glues on the cells of interest have to be experimentally checked before they can be used for cell adhesion. This also applies to other cantilever-functionalization schemes relying on specific molecular recognitions, such as antigen/antibody, biotin/streptavidin, and Concanavalin A/carbohydrated-receptors, to couple single cells to the cantilever.
To probe the T cell/DC interactions, the optimized parameters as indicated in the protocol (step 1.7.2) were chosen for force spectroscopy. Among them, the set-point value and contact time are the two key parameters. Generally, the optimization of set-point begins with small values (0.1-0.2 nN). For cell/cell interaction, a high set-point value (>2 nN) leads to large deformation of cells and a large contact area. This normally results in a large adhesion force readout. However, the probed force originates from both specific and nonspecific interactions at the cell/cell interface due to the complicated nature of cell surfaces, which, to some extent, scales with the contact area. Therefore, the larger the set-point value, the larger the contribution of nonspecific interactions. The latter is what should be minimized in any force measurements. In addition, to learn about nonspecific interactions, control force measurements such as using specific antibody or knockout (or knockdown) cells to block specific interactions of interest need to be considered to get basal force readout at given set-point values. This will help to identify the specific interactions in the testing measurements. As to the contact time, it depends on the time scale at which the probed molecular or cellular events take place. Therefore, prior knowledge of the events of interest is important. In case of T cell/inactivated DC interactions, adhesion molecule LFA-1 on T cell and ICAM-1 on DC form a binding pair. This intermolecular bonding occurs rather fast once the two counterparts are in position, but it takes time for the molecules to diffusion to the right places on the cell membrane where the counterpart molecules are ready for bonding, a diffusion-limited process. Therefore, we set 10 s of contact time to allow multiple LFA-1/ICAM-1 bonding pairs to form according to the shear flow experiments by Bongrand group27,28. Although a longer time can be set, at certain point, longer time doesn't help when the bonding formation is saturated at the interface. Moreover, long contact times may result in downstream cellular responses which may be not of the interest. On the other hand, if certain cellular events are of the interest, such as the phagocytic event described in the second application where the bead was partially engulfed by the macrophage, long contact time is absolutely necessary.
To accumulate enough statistics, 20 repeats of force curves were collected for each T cell/DC pairs and at least 14 forces curves were used for maximum adhesion force analysis. At least 5 pairs were tested in each testing groups. To remove sample histories, only fresh T cell/DC pairs were probed, meaning that the selected T cells and DCs for probing had no contact histories with any other cells. Although the above procedure makes the overall experiments time-and cost-consuming, it is perhaps the proper way to perform such force measurements on T cell/DC pairs.
Attaching single beads to the cantilever is relatively easy compared to cell-functionalization on the cantilever. Since epoxy glues with various solidification times are available in the market, it is possible to choose an epoxy glue with a long solidification time, typically on the order of hours. This allows multiple bead-modified cantilevers to be prepared in one beads sample. Alternatively, a UV-curable glue can be used, which can shorten the curing time significantly, about 10 min under UV light28. No matter what glues are being used, the only critical step throughout the protocol is to attach a minimum amount of glue to the tip of the cantilever. The excess glue will not only bury the bead easily, making the cell engage with the glue instead of the bead during the measurement, but also change the mechanical property of the cantilever, making force-calibration inaccurate. Therefore, it is important to control the contact area between the cantilever and the glue so that only a tiny amount of the glue is confined at the very end of the cantilever. The method described here is also applicable to other micron-sized solid particles, such as monosodium urate crystal15, alum14, and cholesterol crystal29.
Apart from force-probing, AFM can also deliver a physical or chemical stimulus to the cells and subsequent cellular events can be monitored fluorescently in real-time, as demonstrated in the second application. This opens a great opportunity to address spatiotemporally more complicated biological events, such as the formation of immunological synapse30, which cannot be characterized in real-time by conventional approaches.
The authors have nothing to disclose.
This work is supported by the National Natural Science Foundation of China General Program (31370878), State Key Program (31630023) and Innovative Research Group Program (81621002).
Material | |||
10 μl pipette tip | Thermo Fisher | 104-Q | |
15 ml tube | Corning | 430791 | |
6 cm diameter culture dish | NALGENE nunc | 150462 | |
6-well culture plate | JET | TCP011006 | |
AFM Cantilever | NanoWorld | Arrow-TL1-50 | tipless cantilever |
β-Mercaptoethanol | Sigma | 7604 | |
Biocompatible glue | BD Cell-Tak | 354240 | |
CD4+ T cell isolation Cocktail | STEMCELL | 19852C.1 | |
DC2.4 cell line | A gift from K. Rock (University of Massachusetts Medical School, Worcester, MA) | ||
Dextran-coated magnetic particles | STEMCELL | SV30010 | |
EDTA | GENEray | Generay-E1101-500 ml | |
Epoxy | ERGO | 7100 | |
Ethanol | twbio | 00019 | |
FBS | Ex Cell Bio | FSP500 | |
FcR blocker | STEMCELL | 18731 | |
Glass coverslip | local vender (Hai Men Lian Sheng) | HX-E37 | 24mm diameter, 0.17mm thinckness |
Glass slides | JinTong department of laboratory and equipment management, Haimen | N/A | customized |
H2O2 (30%) | Sino pharm | 10011218 | |
H2SO4 | Sino pharm | 80120892 | |
HEPES | Sigma | 51558 | |
Magnet | STEMCELL | 18000 | |
Mesh nylon strainer | BD Falcon | REF 352350 | |
Moesin-EGFP | N/A | cloned in laboratory | |
Mouse CD25 Treg cell positive isolation kit | STEMCELL | 18782 | Component: FcR Blocker,Regulatory T cell Positive Selection Cocktail, PE Selection Cocktail, Dextran RapidSpheres, |
Mouse CD4+ Tcell isolation kit | STEMCELL | 19852 | Component:CD4+T cell isolation Cocktail, Streptavidin RapidSpheres, Rat Serum |
NaOH | Lanyi chemical products co., LTD, Beijing | 1310-73-2 | |
PBS | Solarbio | P1022-500 | |
PE selection cocktail | STEMCELL | 18151 | |
Penicillin-Streptomycin | Hyclone | SV30010 | |
PLCδ-PH-mCherry | Addgene | 36075 | |
Polystyrene microspheres 6.0μm | Polysciences | 07312-5 | |
polystyrene round bottom tube | BD Falcon | 352054 | |
Rat serum | STEMCELL | 13551 | |
RAW264.7 | ATCC | ||
Recombinant Human Interleukin-2 | Peprotech | Peprotech, 200-02-1000 | |
Red blood cell lysis buffer | Beyotime | C3702 | |
Regulatory T cell positive selection cocktail | STEMCELL | 18782C | |
RPMI 1640 | Life | C11875500BT | |
Sample chamber | Home made | ||
Streptavidin-coated magnetic particles | STEMCELL | 50001 | |
Transfection kit | Clontech | 631318 | |
Trypsin 0.25% EDTA | Life | 25200114 | |
Tweezers | JD | N/A | |
Name | Company | Catalog Number | Yorumlar |
Equipment | |||
20x objective NA 0.8 | Zeiss | 420650-9901 | Plan-Apochromat |
Atomic force microscope | JPK | cellHesion200 | |
Centrifuge | Beckman coulter | Allegra X-12R | |
Fluorescence imaging | home-made objective-type total internal reflection fluorescence microscop based on a Zeiss microscope stand | ||
Humidified CO2 incubator | Thermo Fisher | HERACELL 150i | |
Inverted light microscope | Zeiss | Observer A1 manual |