前神经入侵是头颈部鳞状细胞癌和其他肿瘤的侵略性表型。小鸡胆膜模型已用于研究血管生成、癌症入侵和转移。在这里,我们演示了如何使用该模型来评估体内的围神经入侵。
神经入侵是癌症包围或侵入神经的表型。它与头颈部鳞状细胞癌和其他癌症的临床效果不佳有关。力学研究表明,神经和肿瘤细胞之间的分子串扰发生在物理相互作用之前。在物理神经-肿瘤相互作用发生之前,只有少数在体内的模型来研究神经外入侵,特别是研究早期进展。小鸡胆膜模型已用于研究癌症入侵,因为胆囊上皮的基底膜模仿了人类上皮组织的膜。在这里,我们重新利用小鸡胆膜模型来研究近神经入侵,将大鼠背根神经结节和人类头颈部鳞状细胞癌细胞移植到胆囊上皮上。我们已经演示了该模型如何可用于评估癌细胞侵入体内神经组织的能力。
前神经入侵(PNI)是癌症中一种研究不足的表型,它与高疾病复发和头部和颈部鳞状细胞癌(HNC)1患者的存活率差有关。PNI在微观上被定义为神经内或周围的肿瘤细胞2,3。当检测到PNI时,患者可能接受辅助疗法,如选择性颈部解剖和/或放射治疗4,5。然而,这些疗法是积极的,而不是PNI特定的。事实上,没有治疗来阻止PNI,主要是因为神经-肿瘤相互作用背后的机制仍然缺乏理解。
不同的分子机制与神经肿瘤的吸引有关;肿瘤和基质细胞释放神经肽和生长因子,促进神经发生6,7。在体外培养时,HNC细胞和背根神经结膜(DRG)都有强大的反应;在6、8、9的培养中几天后,可以看到对肿瘤细胞入侵和神经发生的影响。然而,在入侵之前,缺乏适当的体内模型来重述肿瘤-神经相互作用。在这里,我们提出了一个体内PNI模型,以研究HNC细胞和神经6的早期相互作用。我们调整了小鸡胆膜(CAM)模型,包括神经组分,在CAM中嫁接DRG,然后移植癌细胞来模拟内膜肿瘤微环境。
CAM模型已经成功地用于评估细胞通过基底膜的入侵,模仿癌瘤和黑色素瘤10,11,12的早期侵入性阶段。CAM 由上胆上皮上皮、间痛和下全食上皮组成。胆小节上皮在结构上类似于人类上皮10,13,因为胶原蛋白-IV丰富的基底膜模拟了将口腔上皮与底层结缔组织分离的基底膜。自1913年CAM进行第一次肿瘤移植以来,许多方法的适应被开发,以便评估血管生成15,16,17,肿瘤进展,和转移18.重要的是,将肿瘤移植到CAM上的技术变化很小,但应用在不断发展。报告的复杂性已经公布,包括药物筛选19个,骨组织工程20个,和纳米粒子抗癌药物21个。
我们的实验室使用 CAM-DRG 模型,其中哺乳动物 DRG 被分离并移植到上部 CAM 表面。在DRG被纳入CAM后,HNC细胞在DRG附近移植,并允许在整个体内系统采集和分析之前与DRG相互作用。重要的是,该系统允许通过DRG和肿瘤细胞的荧光标记对DRG和肿瘤进行活体目视观察。该协议包括多个步骤,在17天内执行不同级别的复杂性,从孵化卵子到收获CAM(图1)。表达不同感兴趣的蛋白质的细胞可以在此模型中进行测试,以阐明导致癌症神经入侵的分子通路,以及筛选直接针对神经入侵的药物。用候选药物预处理的细胞可以在CAM上嫁接,与未经治疗的对照组相比,PNI的发生被调查。事实上,CAM模型已经用于药物筛选,作为体外研究和啮齿动物临床前试验之间的中间步骤。
实验设计将随假设而变化。例如,如果测试特定蛋白质在PNI中的作用,实验组将包括移植的DRG与肿瘤细胞过度表达蛋白质,而对照组应包括DRG与细胞稳稳地转染空载体。几个不同的实验设计可用于解决具体问题。
这里介绍的CAM-DRG体内模型通过在肿瘤细胞物理侵入神经之前演示神经-肿瘤相互作用,解决了以前模型的缺陷。大多数PNI体内研究侧重于肿瘤扩散和抑制运动功能,并依靠肿瘤细胞直接注射到坐骨神经23,24,25。坐骨神经注射是PNI的体内模型,癌细胞被注射到小鼠或大鼠坐骨神经中,肿瘤随后生长。注射模型可用于显示神经内肿瘤细胞引起的破坏性肿瘤进展和疼痛。坐骨神经模型也适合研究允许癌细胞在神经中茁壮成长,但缺乏评估PNI早期的能力,因为它将细胞直接引入神经,绕过神经护套。在不同的方法中,手术植入的正交肿瘤移植物用于描述肾上腺素和胆碱能神经纤维在促进前列腺癌进展中的重要性,从而表明神经在肿瘤进展中的突出作用26.这种模式包括化学消融的鼠感和寄生神经的化学消融。寄生纤维渗入肿瘤组织,这是一个与PNI相关的过程,但该模型没有专门用于评估神经和肿瘤之间的物理相互作用。CAM-DRG模型允许研究PNI期间神经和癌症之间的相互作用。此外,与 CAM 型号相比,鼠模型既昂贵又耗时。建议利用CAM-DRG模型对PNI进行力学研究。
CAM-DRG 方法的一些优点包括评估 PNI 和其他表型,如肿瘤生长、转移和血管生成。在较低的CAM和/或肝脏上鉴定人类DNA可用于检测人类癌细胞系10的转移,这是一种比组织切片和染色更敏感的实验方法,这可能不会揭示小转移。
CAM-DRG方法存在一定的局限性,包括观测时间框架短。胚胎的免疫系统在第1827天生理上活跃,届时可能会出现排斥和炎症过程,从而限制了实验时间。在移植接近DRG的肿瘤细胞时,考虑距离也很重要;较大的DRG-癌症距离可能会损害肿瘤细胞和神经之间的分子相互作用,或者可能延迟模型两个组分之间的物理接触。此外,如果胚胎的年长超过本协议的规定,胚胎运动可能会取代肿瘤细胞。因此,使用与受精后第10天一致的卵子进行细胞移植是很重要的。
由于免疫系统在1827日之前尚未完全发育,CAM中的肿瘤微环境与通常用于癌症研究的免疫抑制鼠模型相似。因此,该模型对评估免疫细胞在肿瘤进展中的作用没有用处。另一个限制是鸡种试剂的供应受限,如抗体、细胞因子和引物。
准确执行此协议需要实践;然而,它可以通过实验室成员完成,而无需专门的核心设施。钻蛋壳需要训练。建议在首次尝试此模型之前,先在杂货(非受精)鸡蛋上练习。如果遵循一些避免感染的关键步骤,可以实现高胚胎存活率和模型的成功:在2%Pen/Strep中适当预防DRG,在层流柜中工作,避免蛋壳颗粒分散到 CAM 上。在卵子孵育期间保持稳定的湿度也是至关重要的。我们建议增加每组鸡蛋的数量,直到掌握该技术。对于缺乏经验的实验室人员来说,最常见的问题是卵子污染和细胞移植技术不准确。
DRG收获也需要培训;建议在尝试体内模型之前,先在体外实验中收获DRG。体外DRG培养是优化条件、改进技术以缩短DRG提取持续时间的机会。用钳子抓住DRG时,需要特别注意收获技术。DRG 不应直接举行;压力应施加在压力下方。我们建议使用放大镜在提取过程中更好地可视化 DRG。
重要的是,当首次执行此模型时,所有条件都应针对所需的细胞系进行优化。该模型针对大鼠DRG和HNC细胞系UM-SCC-1进行了优化。使用小鼠DRG和其他癌细胞类型可能需要优化。随着移植细胞浓度越高,肿瘤往往变厚变硬,从而有利于肿瘤的测量。考虑到每个组有多个卵子和每个卵子的细胞适当浓度,每个实验可能需要几百万个细胞。为了便于规划,应考虑对细胞翻倍时间的了解。对于此协议中的一些关键步骤,提供了故障排除表 (表1)。
The authors have nothing to disclose.
这项工作得到了NIH/NIDCR授予DE027551和DE022567(NJD)的支持。
0.25% Trypsin-EDTA (1x) | Gibco | # 25200-056 | |
ACE light source | SCHOTT North America, Inc. | Used to transilluminate the eggs | |
CellTracker Green CMFDA fluorescent dye | Life Technologies | # C7025 | Reconstitute 50µg in 20µL of DMSO and stock at -20oC. Use 1µL of stock solution/mL of culture medium. |
CellTracker Red CMTPX fluorescent dye | Life Technologies | # C34552 | Reconstitute 50µg in 40µL of DMSO and stock at -20oC. Use 1µL of stock solution/mL of culture medium |
Cordless rotary tool | DREMEL | # 866 | Used to drill the egg shell |
DMEM (1x) | Gibco | # 11965-092 | Dulbeecco`s Modified Eagle Medium |
DMSO | Fisher Bioreagents | # BP231-100 | Dimethyl Sulfoxide |
Dumont # 5 fine forceps | Fine Science Tools (FST) | # 11254-20 | Used to harvest DRG |
Egg incubator | GQF Digital Sportsman | # 1502 | Egg incubator equipped with automatic rotator, digital thermostat, temperature and humidity controls |
Engraving cutter | DREMEL | # 108 | Used to drill the egg shell |
Extra fine Graefe forceps, curved | Fine Science Tools (FST) | # 11151-10 | Used to graft DRG onto the CAM on day 8 and to harvest CAM tissue on day 17 |
Extra fine Graefe forceps, straight | Fine Science Tools (FST) | # 11150-10 | Used to graft DRG onto the CAM on day 8 and to harvest CAM tissue on day 17 |
Fertilized Lohmann White Leghorn eggs | Fertilized eggs at early fertilization days, preferably on first day post-fertilization. Eggs used in this protocol are from Michigan State University Poultry Farm. | ||
Filter Forceps | EMD Millipore | # XX6200006P | Blunt forceps used to remove the egg shell |
Fine surgical straight sharp scissor | Fine Science Tools (FST) | #14060-09 | Used to harvest the CAM tissue on day 17 |
HBSS (1x) | Gibco | # 14025-092 | Hank`s Balanced Salt Solution |
HI FBS | Gibco | # 10082-147 | Heat-inactivated Fetal Bovine Serum |
Paraffin wax membrane | Parafilm laboratory film | # PM-996 | Used to temporarily cover the egg openings until DRG grafting on day 8 |
PBS (1x) pH 7.4 | Gibco | # 10010-023 | Phosphate Buffered Saline |
Pen/Strep | Gibco | # 15140-122 | 10,000 Units/mL Penicilin, 10,000 µg/mL Streptomycin |
PFA (paraformaldehyde solution) | Sigma-Aldrich | # P6148-1KG | Dilute in water to make a 4% PFA solution |
Sprague Dawley rats (females) | Charles River laboratories | Strain code: 001 | 6-7 weeks old (190-210g in weight) |
Tegaderm Transparent Film Dressing | 3M | # 9505W | Sterile, 6x7cm, used to cover the egg openings during incubation |