Qui, presentiamo una serie standardizzata dei protocolli per osservare il solco superiore oculare, una struttura recentemente identificato, evolutivamente conservata nell’occhio dei vertebrati. Utilizzando larve di zebrafish, dimostriamo le tecniche necessarie per identificare i fattori che contribuiscono alla formazione e alla chiusura del solco superiore oculare.
Coloboma oculare congenita è una malattia genetica che si osserva tipicamente come una fenditura nella funzione inferiore dell’occhio derivanti dalla chiusura della fenditura coroidico incompleta. Recentemente, l’identificazione degli individui con il coloboma in funzione superiore dell’iride, retina e lente ha portato alla scoperta di una nuova struttura, indicato come la fenditura superiore o superiore del solco oculare (SOS), che è transitoriamente presente sulla dorsale aspetto della Coppa ottica durante lo sviluppo dell’occhio dei vertebrati. Anche se questa struttura è conservata in topi, pulcino, pesce e newt, nostra attuale comprensione di SOS è limitato. Per chiarire i fattori che contribuiscono alla sua formazione e chiusura, è indispensabile essere in grado di osservare e identificare le anomalie, quali ritardo nella chiusura di SOS. Qui, abbiamo deciso di creare una serie standardizzata dei protocolli che può essere utilizzato per visualizzare in modo efficiente il SOS combinando tecniche di microscopia ampiamente disponibili con comuni tecniche di biologia molecolare come macchiatura immunofluorescente e mRNA sovraespressione. Mentre questo set di protocolli si concentra sulla capacità di osservare ritardo chiusura SOS, è adattabile alle esigenze dello sperimentatore e possono essere facilmente modificato. Nel complesso, ci auguriamo di creare un metodo accessibile attraverso il quale la nostra comprensione di SOS può essere avanzato per espandere le conoscenze attuali di sviluppo dell’occhio dei vertebrati.
La formazione dell’occhio dei vertebrati è un processo altamente conservato in cui vie di segnalazione intercellulare attentamente orchestrate stabilire i tipi di tessuto e specifica identità regionale1. Perturbazioni alla morfogenesi occhio presto causare difetti profondi all’architettura dell’occhio e sono frequentemente accecante2. Una tale malattia deriva dall’impossibilità di chiudere la fessura oculare coroidico nella parte ventrale della Coppa ottica3. Questo disturbo, noto come coloboma oculare, è stimato in 1 su 4-5000 nati vivi e causa 3-11% di cecità pediatrica, che si manifesta comunemente come una buco della serratura-come la struttura che sporge inferiorly dalla pupilla al centro dell’occhio4, 5,6. La funzione della fenditura coroidico è di fornire un punto di ingresso per primi sistema vascolare in crescita nella tazza ottica, dopo di che i lati della fenditura fonderanno per racchiudere le navi7.
Mentre coloboma oculare è stata conosciuta fin dai tempi antichi, recentemente abbiamo identificato un sottogruppo romanzo di coloboma pazienti con perdita di tessuto che interessano la funzione superior/dorsale dell’occhio. Lavoro recente nel nostro laboratorio ha portato alla scoperta di una struttura oculare nell’occhio dorsale di zebrafish, che noi definiamo il solco superiore oculare (SOS) o fenditura superiore8. È importante notare che la struttura ha le caratteristiche di un solco e di una fessura. Simile a un solco, è uno strato di tessuto continuo che si estende dal nasale alla retina temporale. Inoltre, la chiusura della struttura non è mediata da una fusione tra i due opposti della membrana dello scantinato, e sembra che richiedono un processo morfogenetico da cui la struttura è popolata dalle cellule. Tuttavia, simile a una fenditura, forma una struttura che separa il lato nasale e temporale dell’occhio dorsale con la membrana dello scantinato. Per coerenza, si farà riferimento ad esso come SOS in questo testo.
Il SOS è evolutivamente conservato in vertebrati, essendo visibile durante la morfogenesi di occhio di pesce, pulcino, newt e mouse8. In contrasto con la fenditura coroidico, che è presente da 20-60 ore post-fertilizzazione (hpf) in zebrafish, il SOS è altamente temporaneo, essendo facilmente visibile da 20-23 hpf e assente da 26 hpf8. Recenti ricerche nel nostro laboratorio ha trovato che, simile alla fenditura coroidico, il SOS svolge un ruolo nell’orientamento vascolare durante occhio morfogenesi8. Anche se i fattori che controllano la formazione e la chiusura di SOS ancora completamente non sono capiti, i nostri dati ha fatto evidenziare ruoli per dorso-ventrale occhio patterning geni8.
Zebrafish è un organismo modello eccellente per studiare il SOS. Come sistema modello, fornisce una serie di vantaggi a studiare lo sviluppo dell’occhio: si tratta di un modello di vertebrati; ogni generazione esibisce alta fecondità (~ 200 embrioni); il suo genoma è stato completamente sequenziato, che facilita la manipolazione genetica; e circa il 70% dei geni umani hanno almeno un ortologo di zebrafish, rendendolo un ideale modello basato su genetica di malattia umana9,10. La cosa più importante, lo sviluppo avviene esternamente alla madre, e le sue larve sono trasparenti, che consente la visualizzazione dell’occhio in via di sviluppo con relativa facilità11.
In questa serie di protocolli, descriviamo le tecniche attraverso le quali il SOS possono essere visualizzati nelle larve di zebrafish. La varietà di tecniche di visualizzazione utilizzati in questo report vi permetterà chiara osservazione di SOS durante lo sviluppo normale dell’occhio, così come la capacità di rilevare difetti di chiusura SOS. I nostri protocolli di esempio saranno caratterizzato da indagini di Gdf6, un BMP localizzate alla dorsale occhio e noto regolatore di chiusura SOS. Ulteriormente, queste tecniche possono essere combinate con manipolazioni sperimentali per identificare fattori genetici o agenti farmacologici che influenzano la chiusura e la corretta formazione di SOS. Inoltre, abbiamo incluso un protocollo attraverso il quale è possibile, l’imaging fluorescente di tutte le membrane cellulari permettendo lo sperimentatore ad osservare i cambiamenti morfologici per le celle circostanti il SOS. Il nostro obiettivo è quello di stabilire un insieme di protocolli standardizzati che può essere utilizzato in tutta la comunità scientifica per offrire nuove prospettive in questo romanzo struttura dell’occhio in via di sviluppo.
Qui, presentiamo una serie standardizzata dei protocolli per osservare il SOS nell’embrione di zebrafish sviluppo. Per determinare fenotipi di ritardo di chiusura, i nostri protocolli sono concentrati sulla capacità di distinguere la separazione dei due lobi discreti del lato dorsale-nasale e dorsale-temporale dell’occhio, simile a tecniche utilizzate per visualizzare ritardo chiusura coroidico fenditura fenotipi nell’occhio ventrale.
Queste tecniche di visualizzazione possono essere utilizza…
The authors have nothing to disclose.
Questo lavoro è stato supportato da istituti canadesi di ricerca di salute (CIHR), scienze naturali e ingegneria ricerca Consiglio (NSERC), Alberta Innova Technology Futures e donne e salute Research Institute (WCHRI bambini).
1-phenyl 2-thiourea | Sigma Aldrich | P7629-10G | |
100 mm Petri dish | Fisher Scientific | FB0875713 | |
35 mm Petri dish | Corning | CLS430588 | |
Agarose | BioShop Canada Inc. | AGA001.1 | |
Bovine serum albumin | Sigma Aldrich | A7906-100G | |
DIC/Fluorescence microscope | Zeiss | AxioImager Z1 | |
Dissection microscope | Olympus | SZX12 | |
Dissection microscope camera | Qimaging | MicroPublisher 5.0 RTV | |
Dow Corning High-vacuum grease | Fisher Scientific | 14-635-5D | |
Ethyl 3-aminobenzoate methanesulfonate salt (Tricaine) | Sigma Aldrich | A5040-25G | |
Goat anti-rabbit Alexa Fluor 488 | Abcam | ab150077 | |
Goat serum | Sigma Aldrich | G9023 | |
Image capture software | Zeiss | ZEN | |
Incubator | VWR | Model 1545 | |
Microscope Cover Glass (22 mm x 22 mm) | Fisher Scientific | 12-542B | |
Microscope slide | Fisher Scientific | 12-544-2 | |
Minutien pin | Fine Science Tools | 26002-10 | |
mMessage mMachine Sp6 Transcription Kit | Invitrogen | AM1340 | |
NotI | New England Biolabs | R0189S | |
Paraformaldehyde (PFA) | Sigma Aldrich | P6148-500G | |
Phenol:Chloroform:Isoamyl Alcohol pH 6.7 +/- 0.2 | Fisher Scientific | BP1752-100 | |
Proteinase K | Sigma Aldrich | P4850 | |
Rabbit anti-laminin antibody | Millipore Sigma | L9393 | |
TURBO Dnase (2 U/µL) | Invitrogen | AM2238 | |
Ultrapure low-melting point agarose | Invitrogen | 16520-100 | |
UltraPure Sodium Dodecyl Sulfate (SDS) | Invitrogen | 15525017 |