Özet

雄性大鼠寻救行为的冲突模型

Published: February 20, 2019
doi:

Özet

这一冲突模型用于测量接触成瘾药物后的抑制控制损伤, 或其他可能影响抑制控制的因素。性刺激和厌恶性障碍同时出现, 因此雄性老鼠必须克服障碍才能接近性奖励。

Abstract

本协议将一种新的冲突任务描述为大鼠抑制控制的模型。在这个模型中, 一个代表高价值奖励的自然奖励刺激 (性刺激) 和厌恶刺激 (引脚) 同时呈现。雄性老鼠必须爬或跳过充满别针的障碍, 才能接近并调查性伴侣。如果动物坚持在他们接近的行为, 而不管厌恶刺激, 它被认为是一个不适应或危险的寻求奖励的行为。冲突任务允许评估因接触吗啡等滥用药物或压力事件而造成的抑制控制不足。

这种模式的主要优点是, 它提供了一个简单而快速的方法来发现接触阿片类药物或其他压力事件后抑制控制的缺陷。除了阿片类药物, 这种行为模型还将有助于快速发现其他致瘾药物引起的抑制控制缺陷。然而, 限制因素是, 在这一冲突任务下, 雄性老鼠的表现可能会受到反复测试的效果。今后, 人们可以希望, 在修改这一冲突模型的基础上, 能够确定接触阿片类药物后具有寻求奖励行为的强迫性表型的个体。

Introduction

吸毒成瘾是一种慢性脑病, 其特点是冲动和强迫药物的寻求和服用1。成瘾的这些主要特征都被假设为抑制控制 2,3的能力受损, 即未能抑制立即追求奖励刺激, 从而发展出适应性不良行为模式4

无通任务和停止信号任务是用来测量响应抑制能力 2,5的原型任务。这两种实验范式通过对比不常见的抑制反应与隐含的去基线 6,7来评估一个人抑制不适当的行为的能力。在这些任务中显示的反应抑制已被证明对可卡因使用者8,9、阿片剂成瘾者10和尼古丁使用者11有损害。另外两个任务–反转学习和多项选择串行反应时间任务–也提供了响应抑制/抑制控制 12,13的测量。然而, 在啮齿类动物身上进行的这些范式大多不仅需要长期的训练, 以便研究对象能够区分不同信号所代表的响应要求, 而且学习速度和学习效果的个体差异可能会干扰随后的抑制试验11的结果.

本文提出了一种新的冲突任务, 可用于测量接触致瘾药物后的抑制控制障碍。在这项任务中, 一个自然的奖励刺激 (性刺激), 代表一个高价值奖励 14, 和厌恶刺激 (别针), 雄性老鼠必须征服, 同时提出。雄性老鼠必须爬或跳过充满别针的障碍, 才能接近并调查性伴侣。如果动物坚持其接近行为, 而不管厌恶刺激, 它被认为是一个不适应或危险的寻求奖励的行为。建立此任务的理由之一是, 它在概念上很简单, 不会像其他任务那样对执行过程提出很高的要求。与其他测量反应抑制的任务相比, 这种冲突任务是基于自然行为的, 具有正常性功能和性经验的老鼠可以在没有学习过程的情况下直接检测。另一个理由是, 在这项任务中提出的冲突在接近奖励和避免厌恶刺激 (或被刺中的风险) 之间可能有更好的效力, 因为它模仿吸毒成瘾者经常把自己放在类似的地方冲突, 但坚持追求毒品奖励, 无论现实生活中的消极后果的风险15

因此, 应用这种冲突模型是一种快速而敏感的方法, 可以发现接触成瘾药物后抑制控制的缺陷, 或其他可能影响抑制控制能力的因素, 如压力。它还为研究抑制控制中潜在缺陷的神经机制提供了一种新的行为策略。此外, 还可以在此任务中添加其他修改。例如, 通过用社会刺激来取代性刺激来改变成本效益比率可以揭示出更多的行为意义。

Protocol

这项研究由中国科学院心理学研究所国际评论委员会 (irb) 批准, 所有实验均按照美国国立卫生研究院 (美国) 《实验动物护理和使用指南》 (2011年)。 1. 冲突模型的材料和设置 每个笼子里有四只老鼠 (50 厘米长 x 22.5 厘米宽 x 30 厘米高), 在可控温度 (22–25°c) 和一个反转的12小时光/暗周期 (21:30 亮起) 至少10天。请注意:在实验开始时, 分别使用了雄性和雌性 …

Representative Results

为了探讨这种冲突模型是否能揭示阿片类药物引起的不良就业风险寻求奖励的行为, 通过短期 (wd7) 后的 t 检验, 比较了含盐和吗啡预处理组表现出的寻奖行为。长期 (wd17) 分别从吗啡中撤出 (图 2)。结果表明, 在戒断的第7天和第17天, 吗啡预处理的大鼠的接近行为明显高于盐预处理大鼠 (图 2a:t=-3.958; d. f. = 24;p < 0.01。<strong cl…

Discussion

药物滥用18引起的抑制性控制缺陷对促进强制吸毒行为和复发19,20起具有重要作用。这里提出的冲突模型为探讨接触成瘾药物的个体抑制控制的变化提供了新的方法。

协议中有几个关键步骤。首先, 研究对象 (雄性老鼠) 在进入后续冲突任务之前必须获得性经验。例如, 雄性老鼠在药物治疗前需要通过交配筛查 (至少?…

Açıklamalar

The authors have nothing to disclose.

Acknowledgements

本论文得到了心理学研究所心理健康重点实验室 (klmh2016k01) 和创伤后应激患者人群评估与干预技术研究 (jcyj2017041313130301569) 的支持。

Materials

Acetic acid Beijing Tongguangjingxi Chemical company CN No.81601 CH3COOH
Benzypenicillin sodium for Injection Huabei Pharmaceutical F7072109 C16H17N2NaO4S
Cotton swabs Wan Xin, Shandong, China 8 cm
β-estradiol benzoate  SIGMA-ALDRICH E8515-200MG estradiol benzoate 
Gauze Wan Xin, Shandong, China 21s × 21s 110×100
Hemostatic forceps Beijing Zhong Sheng Wanda Biotechnology Co.,Ltd.
Morphine hydrochloride Qinghai Pharmaceutical Co. Ltd 20100105 Morphine hydrochloride
Ophthalmic scissors Beijing Zhong Sheng Wanda Biotechnology Co.,Ltd.
Pentobarbital Sodium Sigma C11H17O3N2Na
Precision animal shocker Coulbourn
Progesterone SIGMA-ALDRICH V900699-5G progesterone
Sesama oil Fengyi trading company ltd. Sesama oil
Sodium chloride injection HuaLu Pharmaceutical H17092107 NaCl
Scalpels Gillette 96797241
Surgical blades Shanghai Pudong Jinhuan Medical Products Co.,Ltd
Suture needles Han Qin, Shanghai, China Δ1/2 6×14
Silk sutures Shanghai Pudong Jinhuan Medical Products Co.,Ltd
Sprague-Dawley rats Vital River Animal Center, Beijing, China Sprague-Dawley animal strain
Syringe WeiGao Group Medical Polymer Co.Ltd 1ml, 2ml
Tweezers Beijing Zhong Sheng Wanda Biotechnology Co.,Ltd.

Referanslar

  1. Everitt, B. J., Robbins, T. W. Drug Addiction: Updating Actions to Habits to Compulsions Ten Years On. Annual Review of Psychology. 67, 23-50 (2016).
  2. Bari, A., Robbins, T. W. Inhibition and impulsivity: Behavioral and neural basis of response control. Progress in Neurobiology. 108, 44-79 (2013).
  3. Dalley, J. W., Everitt, B. J., Robbins, T. W. Impulsivity, compulsivity, and top-down cognitive control. Neuron. 69 (4), 680-694 (2011).
  4. Peter, W., Kalivas, N. D. V. The Neural Basis of Addiction: A Pathology of Motivation and Choice. American Journal of Psychiatry. 162, 1403-1413 (2005).
  5. Morein-Zamir, S., Robbins, T. W. Fronto-striatal circuits in response-inhibition: Relevance to addiction. Brain Research. 1628, 117-129 (2015).
  6. Garavan, H. Dissociable Executive Functions in the Dynamic Control of Behavior: Inhibition, Error Detection, and Correction. Neuroimage. 17 (4), 1820-1829 (2002).
  7. Garavan, H., Ross, T. J., Kaufman, J., Stein, E. A. A midline dissociation between error-processing and response-conflict monitoring. Neuroimage. 20 (2), 1132-1139 (2003).
  8. Connolly, C. G., Foxe, J. J., Nierenberg, J., Shpaner, M., Garavan, H. The neurobiology of cognitive control in successful cocaine abstinence. Drug and Alcohol Dependence. (1-2), 45-53 (2012).
  9. Kaufman, J. N., Ross, T. J., Stein, E. A., Garavan, H. Cingulate hypoactivity in cocaine users during a GO-NOGO task as revealed by event-related functional magnetic resonance imaging. The Journal of Neuroscience. 23 (21), 7839-7843 (2003).
  10. Forman, S. D., et al. Brain activity of opiate addicts predicts subsequent treatment retention. Annual Meeting of the American-College-of-Neuropsychopharmacology. , (2004).
  11. Kolokotroni, K. Z., Rodgers, R. J., Harrison, A. A. Acute nicotine increases both impulsive choice and behavioural disinhibition in rats. Psychopharmacology. 217, 455-473 (2011).
  12. Belin-Rauscent, A., et al. From impulses to maladaptive actions: the insula is a neurobiological gate for the development of compulsive behavior. Molecular Psychiatry. 21 (4), 491-499 (2016).
  13. Groman, S. M., et al. Dysregulation of D(2)-mediated dopamine transmission in monkeys after chronic escalating methamphetamine exposure. Journal of Neuroscience. 32 (17), 5843-5852 (2012).
  14. Bai, Y., Li, Y., Lv, Y., Liu, Z., Zheng, X. Complex motivated behaviors for natural rewards following a binge-like regimen of morphine administration: mixed phenotypes of anhedonia and craving after short-term withdrawal. Frontiers in Behavioral Neuroscience. 8, 23 (2014).
  15. Vandaele, Y., Janak, P. H. Defining the place of habit in substance use disorders. Progress in Neuropsychopharmacology & Biological Psychiatry. 87 (Pt A), 22-32 (2018).
  16. Li, Y., et al. The consummatory and motivational behaviors for natural rewards following long-term withdrawal from morphine: no anhedonia but persistent maladaptive behaviors for high-value rewards. Psychopharmacology (Berl). 234 (8), 1277-1292 (2017).
  17. Bai, Y., Belin, D., Zheng, X., Liu, Z., Zhang, Y. Acute stress worsens the deficits in appetitive behaviors for social and sexual stimuli displayed by rats after long-term withdrawal from morphine. Psychopharmacology. 234, 1693-1702 (2017).
  18. Schoenbaum, G., Saddoris, M. P., Ramus, S. J., Shaham, Y., Setlow, B. Cocaine- experienced rats exhibit learning deficits in a task sensitive to orbitofrontal cortex lesions. European Journal of Neuroscience. 19 (7), 1997-2002 (2004).
  19. Belin, D., Belin-Rauscent, A., Murray, J. E., Everitt, B. J. Addiction: failure of control over maladaptive incentive habits. Current Opinion in Neurobiology. 23 (4), 564-572 (2013).
  20. Everitt, B. J. Neural and psychological mechanisms underlying compulsive drug seeking habits and drug memories–indications for novel treatments of addiction. European Journal of Neuroscience. 40 (1), 2163-2182 (2014).
  21. Dai, F., et al. Dynamic Development of Organs and Serum Sex Hormone Levels in Normal Pre-pubertal Female Sprague-Dawley Rats. Chinese Journal of Comparative Medicine. 19 (07), 33-37 (2009).
  22. Orsini, C. A., Trotta, R. T., Bizon, J. L., Setlow, B. Dissociable roles for the basolateral amygdala and orbitofrontal cortex in decision-making under risk of punishment. Journal of Neuroscience. 35 (4), 1368-1379 (2015).
  23. Shimp, K. G., Mitchell, M. R., Beas, B. S., Bizon, J. L., Setlow, B. Affective and cognitive mechanisms of risky decision making. Neurobiology of Learning and Memory. , 60-70 (2015).
  24. Di Ciano, P., Le Foll, B. Evaluating the Impact of Naltrexone on the Rat Gambling Task to Test Its Predictive Validity for Gambling Disorder. PLoS One. 11 (5), e0155604 (2016).
  25. Ravel, N., et al. Elucidating Poor Decision-Making in a Rat Gambling Task. PLoS One. 8 (12), e82052 (2013).
  26. Charles, A., Pradhan, A. A. Delta-opioid receptors as targets for migraine therapy. Current Opinion in Neurology. 29 (3), 314-319 (2016).
  27. Lu, Z., et al. Truncated mu-Opioid Receptors with 6 Transmembrane Domains Are Essential for Opioid Analgesia. Anesthesia & Analgesia. 126 (3), 1050-1057 (2018).
  28. Sinha, R., Shaham, Y., Heilig, M. Translational and reverse translational research on the role of stress in drug craving and relapse. Psychopharmacology (Berl). 218 (1), 69-82 (2011).
  29. Wilson, C. A., Schade, R., Terry, A. V. Variable prenatal stress results in impairments of sustained attention and inhibitory response control in a 5-choice serial reaction time task in rats. Nörobilim. 218, 126-137 (2012).

Play Video

Bu Makaleden Alıntı Yapın
Jiang, S., Zhang, Y., Zheng, X., Luo, H., Liu, Z., Bai, Y. A Conflict Model of Reward-seeking Behavior in Male Rats. J. Vis. Exp. (144), e59141, doi:10.3791/59141 (2019).

View Video