Here, we present a cell dissociation protocol for efficiently isolating cells present at low abundance within the Drosophila visual system through fluorescence activated cell sorting (FACS).
Recent improvements in the sensitivity of next generation sequencing have facilitated the application of transcriptomic and genomic analyses to small numbers of cells. Utilizing this technology to study development in the Drosophila visual system, which boasts a wealth of cell type-specific genetic tools, provides a powerful approach for addressing the molecular basis of development with precise cellular resolution. For such an approach to be feasible, it is crucial to have the capacity to reliably and efficiently purify cells present at low abundance within the brain. Here, we present a method that allows efficient purification of single cell clones in genetic mosaic experiments. With this protocol, we consistently achieve a high cellular yield after purification using fluorescence activated cell sorting (FACS) (~25% of all labeled cells), and successfully performed transcriptomics analyses on single cell clones generated through mosaic analysis with a repressible cell marker (MARCM). This protocol is ideal for applying transcriptomic and genomic analyses to specific cell types in the visual system, across different stages of development and in the context of different genetic manipulations.
The Drosophila visual system is an outstanding model for studying the genetic basis of development and behavior. It comprises a stereotyped cellular architecture1 and an advanced genetic toolkit for manipulating specific cell types2,3. A major strength of this system is the ability to autonomously interrogate gene function in cell types of interest with single cell resolution, using genetic mosaic methods4,5. We sought to combine these genetic tools with recent advances in next generation sequencing to perform cell type-specific transcriptomic and genomic analyses in single cell clones in genetic mosaic experiments.
To accomplish this, it is essential to develop a robust and efficient method to selectively isolate low abundant cell populations in the brain. Previously, we developed a protocol for isolating specific cell types in the visual system during pupal development through FACS, and determining their transcriptomes using RNA-seq6. In these experiments, the vast majority of cells of a particular type (e.g. R7 photoreceptors) were fluorescently labeled. Using this method, in genetic mosaic experiments, wherein only a subset of cells of the same type are labeled, we failed to isolate enough cells to obtain quality sequencing data. To address this, we sought to increase the cellular yield by improving the cell dissociation protocol.
Our approach was to decrease the total length of the protocol to maximize the health of dissociated cells, improve cellular health by altering dissection and dissociation buffers, and reduce the amount of mechanical disruption to the dissected tissue. We tested the improved protocol7 using mosaic analysis with a repressible cell marker5 (MARCM), which allows generation of single fluorescently labeled clones of particular cell types, that are wild type or mutant for a gene of interest in an otherwise heterozygous fly. Where, under identical conditions, our earlier protocol failed to generate enough material for RNA-seq, the improved protocol was successful. We reproducibly achieve a high cellular yield (~25% of labeled cells) and obtain high quality RNA-seq data from as little as 1,000 cells7.
A number of protocols have been previously described to isolate particular cell types in Drosophila6,8,9,10,11,12,13,14,15,16. These protocols are mostly intended for isolating cells that are abundant within the brain. Our protocol is optimized for isolating low abundant cell populations (fewer than 100 cells per brain) in the visual system using FACS for subsequent transcriptomic and genomic analyses. With this protocol, we aim to provide a way to reproducibly isolate low abundant cells from the fly visual system by FACS and obtaining high quality transcriptome data by RNA-seq.
1. Planning Before the Experiment
2. Fly Work
NOTE: Flies are raised at 25 °C with ~50% humidity unless otherwise noted. Below the genotype of females is indicated as Genotype F, and that of males as Genotype M.
3. Sample Preparation
NOTE: All the reagents used in this protocol are listed in the Table of Materials.
4. Preparing cDNA Libraries and Sequencing by Smart-seq2
NOTE: To minimize technical variability, make all the cDNA libraries at the same time, and sequence them on the same flow cell.
General scheme
A general scheme of the protocol is shown in Figure 1. The protocol is divided into three major parts: fly work, sample preparation, sequencing and data analysis. The "Planning before the experiment" session of the protocol is not included in the general scheme for simplicity.
Timeline
A calendar of the major parts of the protocol (Fly work and Sample preparation) is shown in Figure 2.
Verifying cell-specific labeling by confocal microscopy
In a representative experiment, L3 lamina monopolar neurons (L3) were fluorescently labeled. L3 neuron is one of the five homologous lamina neurons (L1-L5) that receive input from the broadly tuned photoreceptors R1-R6 and relay the information to the high center by synapsing to target neurons in the medulla. In a MARCM experiment, single cell L3 clones are generated by mitotic recombination and fluorescently labeled by two markers, myr-tdTOM (membrane) and H2A-GFP (nuclear). The genotypes of flies used in the crosses are shown in Table 1. To verify cell-specific labelling, fly brains of the desired genotype were dissected at the developmental stage of interest (40 h APF). Immunostaining was performed as previously described7 using antibodies specific against dsRed and GFP (Figure 3, magenta and green), as well as the 24B10 antibody as a reference for the lamina and medulla neuropils (Figure 3, blue). Confocal microscopy confirmed that L3 is the only cell type labelled by both dsRed and GFP in the optic lobe.
Isolation of low-abundance cells by FACS
A representative FACS sorting result is shown in Figure 4. 100,000 events were recorded. 29.9% of all the events are potential singlets, and the rest could be debris or aggregates. Doublets and cells with different sizes were then gated out based on granularity and size. From the remaining single cells (FSC singlets, 27.3% of all events), L3 neurons appeared as a tight cluster in P1 (Figure 4, Specimen, magenta), which was well separated from the background cells (Figure 4, Specimen, blue). The size of the cells in P1 was similar consistent with a homogenous cellular population. Notably, a few cells in P2 (Figure 4, Specimen, green) with intermediate fluorescence intensity of dsRed and GFP were distributed between the tight cluster of cells in P1 and the background. The identity of these cells was not clear. Since P2 cells had a different size than the P1 cells, these cells were likely to be non-specific. To avoid potential contamination from the non-specific cells, only P1 cells were collected for the experiment. From 100,000 events, 45 P1 cells are obtained.
Figure 1: A general scheme of the protocol. The protocol consists of three parts: fly work, sample preparation, sequencing and data analysis. The approximate processing time of each part is indicated. Major steps of each part are also shown in the corresponding boxed regions. Please click here to view a larger version of this figure.
Figure 2: Timeline for fly work and Sample preparation. The protocol takes about 6 weeks. Timing for the major steps is shown in the calendar. Dissection, dissociation and RNA purification are done in the same day as the FACS sorting, and are not shown in the calendar for simplicity. Three biological replicates are done sequentially in the same week with the same crosses. Please click here to view a larger version of this figure.
Figure 3: A representative confocal microscopy image showing the selective labeling of desired cells by fluorescent markers. In MARCM experiments, single L3 lamina monopolar neurons were made to express myr-tdTOM and H2A-GFP using an L3-specific GAL4 driver (9-9-GAL4)18. Fly brains of the desired genotype were dissected at 40hr APF and stained with anti-dsRed, anti-GFP and 24B10 antibodies (as a reference for the lamina and medulla neuropils). Fluorescent labeling was assessed by confocal microscopy. L3 neurons are born in the lamina and project axons that terminate within the medulla neuropil. In each brain, a subset of L3 neurons expressed both fluorescent reporters, and these were the only cells in the optic lobe expressing the markers. Please click here to view a larger version of this figure.
Figure 4: Purifying single L3 lamina neuron MARCM clones via FACS: a representative FACS plot. Gates (e.g. P1) were created based on cell granularity, size, and fluorescence intensity to isolate homogeneous single cells. L3 neurons expressing similarly high levels of myr-tdTOM and H2A-GFP were collected from in P1 (magenta). A few cells with intermediate fluorescence intensity are observed in P2 (green). These are different in size than L3 neurons in P1, and could represent non-specific cells. These were not collected. Please click here to view a larger version of this figure.
Genotype | Source |
w; TubP-GAL80, FRT40, 27G05-FLP::PEST/CyO, Kr-GAL4, UAS-GFP; 9-9-GAL4, UAS-myr::tdTOM/TM6B | Peng et al., 2018 |
w; FRT40/CyO, Kr-GAL4, UAS-GFP; UAS-H2A-GFP/TM6B | Peng et al., 2018 |
Table 1: Genotypes of flies used in the crosses.
This protocol is simple and not technically difficult to execute, but there are several key steps that if overlooked will cause a considerable reduction in cellular yield. (Step 2.3.2.) It is crucial that crosses are healthy, and that the food does not dry out. Regular watering of crosses is essential to maximize the number of flies available for dissection that are of the right genotype and at the correct stage of development. How often crosses need to be watered will vary depending on the food used and the housing conditions of the flies. To ensure crosses don't dry out, examine the vials twice a day and add water accordingly. (Step 3.3.) It is also important to pool dissected brains into a single microtube that will be used for the dissociation, as opposed to having each dissector use their own microtube and then subsequently pooling the samples. This will eliminate any brains lost from transferring between microtubes, which can be considerable. (Step 3.4.9.) When pipetting up and down to manually disrupt tissue, it is vital to do so until no remnants of the tissue are visible by eye in the suspension. Incomplete tissue disruption will reduce the number of single cells that can be sorted via FACS, and thus decrease cellular yield.
The major limitation of cellular yield is starting material. In this regard, the dissections are rate limiting for several reasons: (1) the dissociation protocol requires optic lobes to be dissected out of the head and separated from the central brain, (2) to obtain tissue at precise time-points during development the time window for dissections must be limited, (3) The longer the time-period between dissections and FACS, the greater the chance of suboptimal cell health and non-specific effects on gene expression and genomic organization (i.e., the shorter the dissection period the better). The time spent dissecting should be modified to obtain the desired amount of material in the minimal amount of time. Most of the troubleshooting is performed in the pilot experiments. Here it is crucial to: optimize genetic labeling for brightness and specificity (Figure 3), assess whether a reproducible population of cells of interest are clearly segregated from background cells in FACS plots (Figure 4), determine the number of brains that need to be dissected to obtain a sufficient amount of material for subsequent applications (see Step 1. Fly work), and determine the minimal amount of time needed to dissect the appropriate numbers of brains.
The major advance of this protocol is that it allows efficient isolation of low abundant cells for transcriptomic and genomic applications, improving sensitivity considerably over our previous method6. Based on our estimations, fluorescently labeled populations comprising fewer than 100 cells per optic lobe can be efficiently isolated for RNA-seq analyses. This allows transcriptomic and genomic analyses to be applied in genetic mosaic experiments, wherein subsets of cells of particular types are genetically manipulated in an otherwise normal background. This represents a critical advance, as such experiments are essential for determining cell autonomous and non-autonomous gene functions in complex tissues.
The authors have nothing to disclose.
This research was funded by the NINDS of the National Institutes of Health under award number K01NS094545, andgrants from the Lefler Center for the Study of Neurodegenerative Disorders. We acknowledge Liming Tan and Jason McEwan for valuable conversations.
Liberase TM | Roche | 5401127001 | Proteolytic enzyme blend |
NaCl | Sigma-Aldrich | S3014 | |
KCl | Sigma-Aldrich | P9541 | |
NaH2PO4 | Sigma-Aldrich | S9638 | |
NaHCO3 | Sigma-Aldrich | S5761 | |
Glucose | Sigma-Aldrich | G0350500 | |
L-Glutathione | Sigma-Aldrich | G6013 | |
Heat Inactivated Bovine Serum | Sigma-Aldrich | F4135 | |
Insulin Solution | Sigma-Aldrich | I0516 | |
L-Glutamine | Sigma-Aldrich | G7513 | |
Penicillin-Streptomycin Solution | Sigma-Aldrich | P4458 | |
Schneider's Culture Medium | Gibco | 21720024 | |
Papain | Worthington | LK003178 | |
2-Mercaptoethanol | Sigma-Aldrich | M6250-100ML | |
RNeasy Micro Kit | Qiagen | 74004 | RNA purification kit |
RNase-free DNase | Qiagen | 79254 | |
SuperScript II Reverse Transcriptase | Life Technologies | 18064-014 | |
dNTP Mix | Life Technologies | R0191 | |
MgCl2 Solution | Sigma-Aldrich | M1028-10X1ML | |
Betaine Solution | Sigma-Aldrich | B0300-1VL | |
RNaseOUT | Life Technologies | 10777-019 | |
Q5 High-Fidelity 2x Master Mix | New England Biolabs | M0492S | |
MinElute PCR Purification Kit | Qiagen | 28004 | |
Nextera XT DNA Library Prepration Kit | Illumina | FC-131-1024 | |
Nextera XT Index Kit | Illumina | FC-131-1001 | |
Test Tube with Cell Strainer Snap Cap | Falcon | 352235 | |
Bottle-Top Vacuum Filter Systems | Corning | CLS431153 | |
ThermoMixer F1.5 | Eppendorf | 5384000020 | |
FACSAria Flow Cytometer | BD Biosciences | 656700 | |
HiSeq 2500 Sequencing System | Illumina | SY–401–2501 |