Özet

自由运动大鼠脑电图记录过程中兴奋氨基酸的微透析

Published: November 08, 2018
doi:

Özet

在这里, 我们描述了一种方法, 在体内微透析分析天冬氨酸和谷氨酸释放在腹侧海马的癫痫和非癫痫大鼠, 结合脑电图记录。天冬氨酸和谷氨酸的细胞外浓度可能与疾病的不同阶段有关。

Abstract

微透析是一种成熟的神经科学技术, 它将扩散到大脑间质空间的神经质活性物质的变化与病理的行为和/或病理的具体结果 (如癫痫发作)联系起来。为癫痫)。在研究癫痫时, 微透析技术通常与短期甚至长期的视频脑电图 (eeg) 监测相结合, 以评估自发发作的频率、严重程度、进展和聚类。联合微透析-脑电图是在使用多种方法和仪器的基础上进行的。在这里, 我们进行了体内微透析和连续视频脑电图记录, 以监测谷氨酸和天冬氨酸流出随着时间的推移, 在不同阶段的自然历史癫痫在大鼠模型。这种组合方法允许将神经递质释放的变化与疾病发展和进展的特定阶段配对。采用液相色谱法测定透析液中氨基酸的浓度。在这里, 我们描述了方法, 并概述了一个人在体内微透析-脑电图应采取的主要预防措施, 特别注意立体定向手术, 基础和高钾刺激在微透析, 深度电极脑电图记录和高效液相色谱分析天冬氨酸和谷氨酸在透析液中。这种方法可以用来测试各种药物或疾病引起的大脑中天冬氨酸和谷氨酸的生理浓度的变化。根据适当的分析分析分析的可用性, 它可以进一步用于测试不同的可溶性分子时, 同时使用脑电图记录。

Introduction

为了深入了解谷氨酸介导的兴奋性和 gabap 抑制神经传递导致颞叶癫痫 (tle) 自发性癫痫发作的功能损害, 我们系统地监测了细胞外的浓度。gaba 1 及更高版本的谷氨酸天冬氨酸2的水平, 通过微透析在大鼠的腹侧海马在疾病的自然过程的不同时间点,在癫痫的发展和进展。我们利用大鼠的 tle 皮尔卡平模型, 在行为、电生理和组织病理学变化方面非常准确地模仿了这种疾病, 并将氨基的透析液浓度相关酸到其不同的阶段: 急性阶段后的癫痫侮辱, 潜伏期阶段, 第一次自发性发作的时间和慢性药物5,6, 7.通过长期的视频脑电图监测、精确的脑电图和自发性癫痫的临床特征, 确定了疾病阶段的框架。微透析技术与长期视频脑电图监测相关的应用使我们能够提出 tle 神经病理学的机械假设。总之, 本手稿中描述的技术允许将大脑区域内的神经化学改变与动物模型中癫痫的发展和进展配对。

配对装置由与微透析插管并列的深度电极组成, 经常用于癫痫研究, 在这些研究中, 神经递质、其代谢物或能量底物的变化应与神经元活动相关。在绝大多数情况下, 它被用于行为自由的动物, 但它也可以在人类以类似的方式进行,例如, 在手术前接受深度电极调查药物耐药癫痫患者8。脑电图记录和透析液收集都可以单独进行 (例如, 将电极植入一个半球, 将微透析探针植入另一个半球, 甚至在一组动物中进行微透析在另一组动物中唯一的脑电图)。然而, 将电极耦合到探针可能有多重优点: 它简化了立体定向手术, 将组织损伤限制在一个半球 (同时保持另一个完整, 作为组织学研究的控制), 并将结果同质为这些是从相同的大脑区域和相同的动物中获得的。

另一方面, 耦合微透析探针电极装置的制备如果是自制的, 则需要技能和时间。如果从市场上购买, 人们可以花相对较高的钱。此外, 当微透析探针 (探针尖端通常直径 200-400μm, 7-12 毫米长)9和 eeg 电极 (电极尖端通常直径为 300-500μm, 长度足以达到感兴趣的大脑结构10时) 10 是耦合, 安装的设备代表一个笨重和相对沉重的物体在头部的一侧, 这是麻烦的动物和容易丢失, 特别是当它连接到透析泵和硬线脑电图记录系统。这一方面更相关的癫痫动物是困难的处理和较少适应微透析过程。适当的手术技术和适当的术后护理可以导致持久的植入物, 导致最小的动物不适, 应追求组合微透析-脑电图实验10,11, 12岁

微透析技术的优点和局限性已被许多神经科学家详细地综述。它比其他体内灌注技术 (例如, 快速流动推拉或皮质杯灌注) 的主要优势是探针的小直径, 涵盖了一个相对精确的感兴趣的区域13,14, 15岁第二, 微透析膜在组织和胚芽之间形成物理屏障;因此, 高分子量物质不交叉, 也不干扰分析16,17。此外, 组织被保护免受湍流流动的香水18。另一个重要的优点是有可能改变灌注流, 以最大限度地提高在热液中的分析物浓度 (, 微透析的过程可以很好地定义数学, 并可以修改到产生高产量样品中分析物的浓度)19。最后, 该技术可用于将药物或药理活性物质注入感兴趣的组织, 并确定其在干预部位20的效果.另一方面, 与电化学或生物传感器相比, 微透析的解决时间有限 (由于采集样品所需的时间, 通常超过 1分钟);它是一种侵入性技术, 导致组织损伤;它破坏了膜周围空间内的神经化学平衡, 因为所有可溶性物质的连续浓度梯度与感兴趣的分析物一起进入香水。最后, 微透析技术受到用于对材料 92122、23进行定量的分析技术的限制的高度影响..用邻苯二甲酯衍生后的高效液相色谱法 (hplc) 对生物样品中的谷氨酸和天冬氨酸进行分析, 得到了24,25,26的良好验证。,27及其广泛的讨论超出了本手稿的范围, 但将详细描述使用这种方法产生的数据。

当正确地进行, 而不修改的香水成分, 微透析可以提供可靠的信息, 神经递质释放的基础水平。基础水平的最大部分很可能是突触9的发射机溢出的结果.因为在许多情况下, 在额外的突触空间中对神经递质进行简单的取样不足以实现调查的目标, 所以微透析技术也可以用来刺激神经元或剥夺它们的重要作用生理离子, 如 k+或 ca2 +, 以唤起或防止神经递质的释放。

高 k+刺激经常用于神经生物学, 以刺激神经元的活动, 不仅在清醒的动物, 但也在初级和有机类型培养。健康的中枢神经系统暴露在高浓度 k+ (40-100 mm) 的溶液中, 会唤起神经递质28的流出.这种神经元在应对高 k+时提供额外释放的能力可能会在癫痫动物1和其他神经退行性疾病 2930 中受到损害。同样, ca2 +剥夺 (通过灌注 ca2 +游离溶液获得) 被用来建立钙依赖释放的大多数神经递质测量微透析。一般认为 ca2 +依赖释放是神经元的起源, 而 ca2 +独立释放源于胶质细胞, 但许多研究对 ca2+敏感测量的含义引发了争议。谷氨酸或 gaba9: 因此, 如果可能的话, 最好支持微透析研究与微传感器研究, 因为后者具有较高的空间分辨率, 电极允许接近突触 31.

关于癫痫动物的微透析研究, 重要的是要强调的是, 从它们中的大多数获得的数据依赖于对癫痫发作的视频或视频脑电图监测,由于异常而短暂出现体征和症状大脑中过度或同步的神经元活动 32。在准备实验时, 应考虑皮卡平治疗动物的电图癫痫发作的一些具体问题。自发性发作后, 伴随着抑郁活动, 脑电图间尖峰频繁, 在33,34组发生。sham 操作的非癫痫动物可能表现出类似癫痫发作的活动35 , 因此脑电图记录评估的参数应标准化36 , 如果可能, 微透析的时间应明确界定。最后, 我们强烈建议遵循国际抗癫痫协会和美国癫痫学会专家在其最近的报告中概述的控制成年啮齿类动物的视频脑电图监测的原则和方法标准37 ,38

本文介绍了谷氨酸和天冬氨酸的微透析与癫痫动物的长期视频脑电图记录以及它们在透析液中的高效液相色谱分析。我们将强调议定书的关键步骤, 一个人应该注意, 以取得最好的结果。

Protocol

所有实验程序都已由费拉拉大学动物护理和使用机构委员会和意大利卫生部根据欧洲共同体概述的准则批准 (授权: d. m. 246/ensen-b)1986年11月24日理事会指令 (86/609/EEC)。该方案是专门为谷氨酸和天冬氨酸的测定在脑电图控制下获得的癫痫大鼠和非癫痫大鼠微透析过程中的谷氨酸和天冬氨酸的测定而进行的。这里描述的许多材料可能很容易被你在实验室中用于脑电图记录或微透析的材料所取代。 <p c…

Representative Results

探头恢复 平均回收率 (即在小瓶溶液中的平均氨基酸含量占含量的百分比在小瓶溶液中的含量百分比) 为 15.49±0.42%, 流量为 2μl%, 在3μlp 的流量下为 6.32±0.64, 在流量率为2的情况下为14.89±0.36% 在使用铜叶膜探针时, 为天冬氨酸在3μl/min 时使用。如果使用聚丙烯腈膜探针, 平均回收率为 13.67±0.42%, 流量为 2μlmmin, 在3μlmin 下的平…

Discussion

在这项工作中, 我们展示了如何连续的视频脑电图记录与微透析相结合, 可以在一个实验模型的 tle。视频脑电图记录技术用于正确诊断动物疾病进展的不同阶段, 微透析技术用于描述及时发生的谷氨酸释放的变化 (没有发现任何变化)在先前发表的研究报告的天冬氨酸 2)。出于简介中讨论的原因, 我们强烈建议使用单个设备植入物在每种动物中同时执行它们。

<p class="jove_content"…

Açıklamalar

The authors have nothing to disclose.

Acknowledgements

作者希望感谢 anna binaschi、paolo roncon 和 eleonora palma 对优先出版的手稿的贡献。

Materials

3-channel two-twisted electrode Invivo1, Plastic One, Roanoke, Virginia, USA MS333/3-B/SPC Material
guide cannula Agn Tho's, Lindigö, Sweden MAB 4.15.IC Material
Resin KK2 Plastik Elettra Sport, Lecco, Italy KK2 Material
Super Attack gel Loctite Henkel Italia Srl, Milano, Italy 2047420_71941 Material
Imalgene-Ketamine Merial, Toulouse, France 221300288 (AIC) Solution
Xylazine Sigma, Milano, Italy X1251 Material
Isoflurane-Vet Merial, Toulouse, France 103120022 (AIC) Solution
Altadol 50 mg/ ml – tramadol Formevet, Milano, Italy 103703017 (AIC) Solution
Gentalyn 0.1% crm – gentamycine MSD Italia, Roma, Italy 20891077 (AIC) Material
simplex rapid dental cement Kemdent, Associated Dental Products Ltd, Swindon, United Kingdom ACR811 Material
GlasIonomer CX-Plus Cement Shofu, Kyoto, Japan PN1167 Material
probe clip holder Agn Tho's, Lindigö, Sweden p/n 100 5001 Equipment
Histoacryl® Blue Topical Skin Adhesive TissueSeal, Ann Arbor, Michigan, USA TS1050044FP Material
Valium 10 mg/2 ml – diazepam Roche, Monza, Italy 019995063 (AIC) Material
1 mL syringe with 25G needle Vetrotecnica, Padova, Italy 11.3500.05 Material
rat flexible feeding needle 17G Agn Tho's, Lindigö Sweden 7206 Material
Grass Technology apparatus Grass Technologies, Natus Neurology Incorporated, Pleasanton, California, USA M665G08 Equipment (AS40 amplifier, head box, interconnecting cables, telefactor model RPSA S40)
modular data acquisition and analysis system MP150 Biopac, Goleta, California, USA MP150WSW Equipment
digital video surveillance system AverMedia Technologies, Fremont, California, USA V4.7.0041FD Equipment
microdialysis probe Agn Tho's, Lindigö Sweden MAB 4.15.1.Cu Material
microdialysis probe Synaptech, Colorado Springs, Colorado, USA S-8010 Material
block heater Grant Instruments, Cambridge, England QBD2 Equipment
stirrer Cecchinato A, Aparecchi Scientifici, Mestre, Italy 711 Equipment
infusion pump Univentor, Zejtun, Malta 864 Equipment
fine bore polythene tubing Smiths Medical International Ltd., Keene, New Hampshire, USA 800/100/100/100 Material
blue tubing adapters Agn Tho's, Lindigö Sweden 1002 Material
red tubing adapters Agn Tho's, Lindigö Sweden 1003 Material
2.5 mL syringe with 22G needle Chemil, Padova, Italy S02G22 Material
vial cap Cronus, Labicom, Olomouc, Czech Republic VCA-1004TB-100 Material
septum Thermo Scientific, Rockwoood, Tennessee, USA National C4013-60 8 mm TEF/SIL septum Material
glass insert with bottom spring Supelco, Sigma, Milano, Italy 27400-U Material
autosampler vial National Scientific, Thermo Fisher Scientific, Monza, Italy C4013-2 Material
Smartline manager 5000 system controller and degasser unit Knauer, Berlin, Germany V7602 Equipment
Smartline 1000 quaternary gradient pump Knauer, Berlin, Germany V7603 Equipment
spectrofluorometric detector Shimadzu, Kyoto, Japan RF-551 Equipment
chromatogrphic column Knauer, Berlin, Germany 25EK181EBJ Material
chromatogrphic pre-column Knauer, Berlin, Germany P5DK181EBJ Material
mobile phase solution A 0.1 M sodium phosphate buffer, pH 6.0 Solution
mobile phase solution B 40% 0.1 M sodium phosphate buffer, 30% methanol, 30% acetonitrile, pH 6.5 Solution
Ringer solution composition in mM: MgCl2 0.85, KCl 2.7, NaCl 148, CaCl2 1.2, 0.3% BSA Solution
modified Ringer solution composition in mM: MgCl2 0.85, KCl 100, NaCl 50.7, CaCl2 1.2, 0.3% BSA Solution
saline 0.9% NaCl, ph adjusted to 7.0 Solution
sucrose solution 10% sucrose in distilled water Solution

Referanslar

  1. Soukupova, M., et al. Impairment of GABA release in the hippocampus at the time of the first spontaneous seizure in the pilocarpine model of temporal lobe epilepsy. Experimental Neurology. 257, 39-49 (2014).
  2. Soukupova, M., et al. Increased extracellular levels of glutamate in the hippocampus of chronically epileptic rats. Nörobilim. 301, 246-253 (2015).
  3. Curia, G., Longo, D., Biagini, G., Jones, R. S., Avoli, M. The pilocarpine model of temporal lobe epilepsy. Journal of Neuroscience Methods. 172 (2), 143-157 (2008).
  4. Scorza, F. A., et al. The pilocarpine model of epilepsy: what have we learned?. Anais da Academia Brasileira de Ciencias. 81 (3), 345-365 (2009).
  5. Pitkanen, A., Sutula, T. P. Is epilepsy a progressive disorder? Prospects for new therapeutic approaches in temporal-lobe epilepsy. The Lancet Neurology. 1 (3), 173-181 (2002).
  6. Pitkanen, A., Lukasiuk, K. Mechanisms of epileptogenesis and potential treatment targets. The Lancet Neurology. 10 (2), 173-186 (2011).
  7. Reddy, D. S. Role of hormones and neurosteroids in epileptogenesis. Frontiers in Cellular Neuroscience. 7 (115), (2013).
  8. Engel, J. Research on the human brain in an epilepsy surgery setting. Epilepsy Research. 32 (1-2), 1-11 (1998).
  9. Watson, C. J., Venton, B. J., Kennedy, R. T. In vivo measurements of neurotransmitters by microdialysis sampling. Analytical Chemistry. 78 (5), 1391-1399 (2006).
  10. Jeffrey, M., et al. A reliable method for intracranial electrode implantation and chronic electrical stimulation in the mouse brain. BMC Neuroscience. 14, 82 (2013).
  11. Oliveira, L. M. O., Dimitrov, D. Chapter 2. Surgical techniques for chronic implantation of microwire arrays in rodents and primates. Methods for Neural Ensemble Recordings. , (2008).
  12. Fornari, R. V., et al. Rodent stereotaxic surgery and animal welfare outcome improvements for behavioral neuroscience. Journal of Visualized Experiments: JoVE. (59), e3528 (2012).
  13. Horn, T. F., Engelmann, M. In vivo microdialysis for nonapeptides in rat brain–a practical guide. Methods. 23 (1), 41-53 (2001).
  14. Kennedy, R. T., Thompson, J. E., Vickroy, T. W. In vivo monitoring of amino acids by direct sampling of brain extracellular fluid at ultralow flow rates and capillary electrophoresis. Journal of Neuroscience Methods. 114 (1), 39-49 (2002).
  15. Renno, W. M., Mullet, M. A., Williams, F. G., Beitz, A. J. Construction of 1 mm microdialysis probe for amino acids dialysis in rats. Journal of Neuroscience Methods. 79 (2), 217-228 (1998).
  16. Nirogi, R., et al. Approach to reduce the non-specific binding in microdialysis. Journal of Neuroscience Methods. 209 (2), 379-387 (2012).
  17. Zhou, Y., Wong, J. M., Mabrouk, O. S., Kennedy, R. T. Reducing adsorption to improve recovery and in vivo detection of neuropeptides by microdialysis with LC-MS. Analytical Chemistry. 87 (19), 9802-9809 (2015).
  18. Wisniewski, N., Torto, N. Optimisation of microdialysis sampling recovery by varying inner cannula geometry. Analyst. 127 (8), 1129-1134 (2002).
  19. Morrison, P. F., et al. Quantitative microdialysis: analysis of transients and application to pharmacokinetics in brain. Journal of Neurochemistry. 57 (1), 103-119 (1991).
  20. Westerink, B. H., De Vries, J. B. A method to evaluate the diffusion rate of drugs from a microdialysis probe through brain tissue. Journal of Neuroscience Methods. 109 (1), 53-58 (2001).
  21. Chefer, V. I., Thompson, A. C., Zapata, A., Shippenberg, T. S. Overview of brain microdialysis. Current Protocols in Neurosciences. , (2009).
  22. Westerink, B. H. Brain microdialysis and its application for the study of animal behaviour. Behavioural Brain Research. 70 (2), 103-124 (1995).
  23. Zhang, M. Y., Beyer, C. E. Measurement of neurotransmitters from extracellular fluid in brain by in vivo microdialysis and chromatography-mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis. 40 (3), 492-499 (2006).
  24. Allison, L. A., Mayer, G. S., Shoup, R. E. o-Phthalaldehyde derivatives of amines for high-speed liquid chromatography/electrochemistry. Analytical Chemistry. 56 (7), 1089-1096 (1984).
  25. Boyd, B. W., Witowski, S. R., Kennedy, R. T. Trace-level amino acid analysis by capillary liquid chromatography and application to in vivo microdialysis sampling with 10-s temporal resolution. Analytical Chemistry. 72 (4), 865-871 (2000).
  26. Hanczko, R., Jambor, A., Perl, A., Molnar-Perl, I. Advances in the o-phthalaldehyde derivatizations. Comeback to the o-phthalaldehyde-ethanethiol reagent. Journal of Chromatography A. 1163 (1-2), 25-42 (2007).
  27. Molnar-Perl, I. Quantitation of amino acids and amines in the same matrix by high-performance liquid chromatography, either simultaneously or separately. Journal of Chromatography A. 987 (1-2), 291-309 (2003).
  28. Solis, J. M., et al. Variation of potassium ion concentrations in the rat hippocampus specifically affects extracellular taurine levels. Neuroscience Letters. 66 (3), 263-268 (1986).
  29. Boatell, M. L., Bendahan, G., Mahy, N. Time-related cortical amino acid changes after basal forebrain lesion: a microdialysis study. Journal of Neurochemistry. 64 (1), 285-291 (1995).
  30. Sutton, A. C., et al. Elevated potassium provides an ionic mechanism for deep brain stimulation in the hemiparkinsonian rat. The European Journal of Neuroscience. 37 (2), 231-241 (2013).
  31. Hascup, K. N., Hascup, E. R. Electrochemical techniques for subsecond neurotransmitter detection in live rodents. Comparative Medicine. 64 (4), 249-255 (2014).
  32. Fisher, R. S., et al. Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia. 46 (4), 470-472 (2005).
  33. Goffin, K., Nissinen, J., Van Laere, K., Pitkanen, A. Cyclicity of spontaneous recurrent seizures in pilocarpine model of temporal lobe epilepsy in rat. Experimental Neurology. 205 (2), 501-505 (2007).
  34. Pitsch, J., et al. Circadian clustering of spontaneous epileptic seizures emerges after pilocarpine-induced status epilepticus. Epilepsia. 58 (7), 1159-1171 (2017).
  35. Pearce, P. S., et al. Spike-wave discharges in adult Sprague-Dawley rats and their implications for animal models of temporal lobe epilepsy. Epilepsy and Behavior. 32, 121-131 (2014).
  36. Twele, F., Tollner, K., Bankstahl, M., Loscher, W. The effects of carbamazepine in the intrahippocampal kainate model of temporal lobe epilepsy depend on seizure definition and mouse strain. Epilepsia Open. 1 (1-2), 45-60 (2016).
  37. Kadam, S. D., et al. Methodological standards and interpretation of video-electroencephalography in adult control rodents. A TASK1-WG1 report of the AES/ILAE Translational Task Force of the ILAE. Epilepsia. 58, 10-27 (2017).
  38. Hernan, A. E., et al. Methodological standards and functional correlates of depth in vivo electrophysiological recordings in control rodents. A TASK1-WG3 report of the AES/ILAE Translational Task Force of the ILAE. Epilepsia. 58, 28-39 (2017).
  39. Bernal, J., et al. Guidelines for rodent survival surgery. Journal of Investigative Surgery: the official journal of the Academy of Surgical Research. 22 (6), 445-451 (2009).
  40. Flecknell, P. Rodent analgesia: Assessment and therapeutics. Veterinary Journal. , 70-77 (2018).
  41. Miller, A. L., Richardson, C. A. Rodent analgesia. The Veterinary Clinics of North America. Exotic Animal Practice. 14 (1), 81-92 (2011).
  42. Geiger, B. M., Frank, L. E., Caldera-Siu, A. D., Pothos, E. N. Survivable stereotaxic surgery in rodents. Journal of Visualized Experiments: JoVE. (20), (2008).
  43. Gardiner, T. W., Toth, L. A. Stereotactic Surgery and Long-Term Maintenance of Cranial Implants in Research Animals. Contemporary Topics in Laboratory Animal Science. 38 (1), 56-63 (1999).
  44. Williams, P. A., et al. Development of spontaneous recurrent seizures after kainate-induced status epilepticus. The Journal of Neuroscience: The official journal of the Society for Neuroscience. 29 (7), 2103-2112 (2009).
  45. Paradiso, B., et al. Localized overexpression of FGF-2 and BDNF in hippocampus reduces mossy fiber sprouting and spontaneous seizures up to 4 weeks after pilocarpine-induced status epilepticus. Epilepsia. 52 (3), 572-578 (2011).
  46. Kanamori, K. Faster flux of neurotransmitter glutamate during seizure – Evidence from 13C-enrichment of extracellular glutamate in kainate rat model. PLoS One. 12 (4), e0174845 (2017).
  47. Kanamori, K., Ross, B. D. Chronic electrographic seizure reduces glutamine and elevates glutamate in the extracellular fluid of rat brain. Brain Research. 1371, 180-191 (2011).
  48. Kanamori, K., Ross, B. D. Electrographic seizures are significantly reduced by in vivo inhibition of neuronal uptake of extracellular glutamine in rat hippocampus. Epilepsy Research. 107 (1-2), 20-36 (2013).
  49. Luna-Munguia, H., Meneses, A., Pena-Ortega, F., Gaona, A., Rocha, L. Effects of hippocampal high-frequency electrical stimulation in memory formation and their association with amino acid tissue content and release in normal rats. Hippocampus. 22 (1), 98-105 (2012).
  50. Mazzuferi, M., Binaschi, A., Rodi, D., Mantovani, S., Simonato, M. Induction of B1 bradykinin receptors in the kindled hippocampus increases extracellular glutamate levels: a microdialysis study. Nörobilim. 135 (3), 979-986 (2005).
  51. Meurs, A., Clinckers, R., Ebinger, G., Michotte, Y., Smolders, I. Seizure activity and changes in hippocampal extracellular glutamate, GABA, dopamine and serotonin. Epilepsy Research. 78 (1), 50-59 (2008).
  52. Ueda, Y., et al. Collapse of extracellular glutamate regulation during epileptogenesis: down-regulation and functional failure of glutamate transporter function in rats with chronic seizures induced by kainic acid. Journal of Neurochemistry. 76 (3), 892-900 (2001).
  53. Wilson, C. L., et al. Comparison of seizure related amino acid release in human epileptic hippocampus versus a chronic, kainate rat model of hippocampal epilepsy. Epilepsy Research. 26 (1), 245-254 (1996).
  54. Lidster, K., et al. Opportunities for improving animal welfare in rodent models of epilepsy and seizures. Journal of Neuroscience Methods. 260, 2-25 (2016).
  55. Parrot, S., et al. High temporal resolution for in vivo monitoring of neurotransmitters in awake epileptic rats using brain microdialysis and capillary electrophoresis with laser-induced fluorescence detection. Journal of Neuroscience Methods. 140 (1-2), 29-38 (2004).
  56. Kennedy, R. T., Watson, C. J., Haskins, W. E., Powell, D. H., Strecker, R. E. In vivo neurochemical monitoring by microdialysis and capillary separations. Current Opinion in Chemical Biology. 6 (5), 659-665 (2002).
  57. Kennedy, R. T. Emerging trends in in vivo neurochemical monitoring by microdialysis. Current Opinion in Chemical Biology. 17 (5), 860-867 (2013).
  58. Ferry, B., Gifu, E. P., Sandu, I., Denoroy, L., Parrot, S. Analysis of microdialysate monoamines, including noradrenaline, dopamine and serotonin, using capillary ultra-high performance liquid chromatography and electrochemical detection. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences. 951, 52-57 (2014).
  59. Jung, M. C., Shi, G., Borland, L., Michael, A. C., Weber, S. G. Simultaneous determination of biogenic monoamines in rat brain dialysates using capillary high-performance liquid chromatography with photoluminescence following electron transfer. Analytical Chemistry. 78 (6), 1755-1760 (2006).
  60. Parrot, S., Lambas-Senas, L., Sentenac, S., Denoroy, L., Renaud, B. Highly sensitive assay for the measurement of serotonin in microdialysates using capillary high-performance liquid chromatography with electrochemical detection. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences. 850 (1-2), 303-309 (2007).
  61. Hershey, N. D., Kennedy, R. T. In vivo calibration of microdialysis using infusion of stable-isotope labeled neurotransmitters. ACS Chemical Neuroscience. 4 (5), 729-736 (2013).
  62. Vander Weele, C. M., et al. Rapid dopamine transmission within the nucleus accumbens: dramatic difference between morphine and oxycodone delivery. The European Journal of Neuroscience. 40 (7), 3041-3054 (2014).
  63. Zestos, A. G., Kennedy, R. T. Microdialysis Coupled with LC-MS/MS for In Vivo Neurochemical Monitoring. The AAPS journal. 19 (5), 1284-1293 (2017).
  64. Benturquia, N., Parrot, S., Sauvinet, V., Renaud, B., Denoroy, L. Simultaneous determination of vigabatrin and amino acid neurotransmitters in brain microdialysates by capillary electrophoresis with laser-induced fluorescence detection. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences. 806 (2), 237-244 (2004).
  65. Chefer, V., et al. Repeated exposure to moderate doses of ethanol augments hippocampal glutamate neurotransmission by increasing release. Addiction Biology. 16 (2), 229-237 (2011).
  66. Morales-Villagran, A., Pardo-Pena, K., Medina-Ceja, L., Lopez-Perez, S. A microdialysis and enzymatic reactor sensing procedure for the simultaneous registration of online glutamate measurements at high temporal resolution during epileptiform activity. Journal of Neurochemistry. 139 (5), 886-896 (2016).
  67. Petit-Pierre, G., et al. In vivo neurochemical measurements in cerebral tissues using a droplet-based monitoring system. Nature Communication. 8 (1), 1239 (2017).
  68. Renaud, P., Su, C. K., Hsia, S. C., Sun, Y. C. A high-throughput microdialysis-parallel solid phase extraction-inductively coupled plasma mass spectrometry hyphenated system for continuous monitoring of extracellular metal ions in living rat brain. Nature Communication. 1326, 73-79 (2014).
  69. Zilkha, E., Obrenovitch, T. P., Koshy, A., Kusakabe, H., Bennetto, H. P. Extracellular glutamate: on-line monitoring using microdialysis coupled to enzyme-amperometric analysis. Journal of Neuroscience Methods. 60 (1-2), 1-9 (1995).
  70. Ngernsutivorakul, T., White, T. S., Kennedy, R. T. Microfabricated Probes for Studying Brain Chemistry: A Review. Chemphyschem: a Eurepean journal of chemical physics and physical chemistry. 19 (10), 1128-1142 (2018).
  71. Mirzaei, M., Sawan, M. Microelectronics-based biosensors dedicated to the detection of neurotransmitters: a review. Sensors. 14 (10), 17981-18008 (2014).

Play Video

Bu Makaleden Alıntı Yapın
Soukupová, M., Falcicchia, C., Lovisari, F., Ingusci, S., Barbieri, M., Zucchini, S., Simonato, M. Microdialysis of Excitatory Amino Acids During EEG Recordings in Freely Moving Rats. J. Vis. Exp. (141), e58455, doi:10.3791/58455 (2018).

View Video