Here, we describe 3 adult zebrafish injury models and their combined use with immunosuppressive drug treatment. We provide guidance on imaging of regenerating tissues and on detecting bone mineralization therein.
Zebrafish are able to regenerate various organs, including appendages (fins) after amputation. This involves the regeneration of bone, which regrows within roughly two weeks after injury. Furthermore, zebrafish are able to heal bone rapidly after trepanation of the skull, and repair fractures that can be easily introduced into zebrafish bony fin rays. These injury assays represent feasible experimental paradigms to test the effect of administered drugs on rapidly forming bone. Here, we describe the use of these 3 injury models and their combined use with systemic glucocorticoid treatment, which exerts bone inhibitory and immunosuppressive effects. We provide a workflow on how to prepare for immunosuppressive treatment in adult zebrafish, illustrate how to perform fin amputation, trepanation of calvarial bones, and fin fractures, and describe how the use of glucocorticoids affects both bone forming osteoblasts and cells of the monocyte/macrophage lineage as part of innate immunity in bone tissue.
Zebrafish represent a powerful animal model to study vertebrate development and disease. This is due to the fact that they are small animals that breed extremely well and that their genome is fully sequenced and amenable to manipulation1. Other advantages include the option to perform continued live imaging at different stages, including in vivo imaging of adult zebrafish2, and the ability to perform high throughput drug screens in zebrafish larvae3. Additionally, zebrafish possess a high regenerative capacity in a variety of organs and tissues including bone, and thus serve as a useful system to study skeletal disease and repair4,5.
Glucocorticoid-induced osteoporosis (GIO) is a disease that results from long term treatment with glucocorticoids, for example in the course of autoimmune disease treatment such as of asthma or rheumatoid arthritis. GIO develops in about 30% of glucocorticoid-treated patients and represents a major health issue6; therefore, it is important to investigate the impact of immunosuppression on bone tissue in great detail. In recent years a variety of zebrafish models dealing with the pathogenesis of GIO have been developed. Glucocorticoid-mediated bone loss has been induced in zebrafish larvae, for example, which led to the identification of counteractive compounds increasing bone mass in a drug screen7. Furthermore, glucocorticoid-induced bone inhibitory effects have been mimicked in zebrafish scales both in vitro and in vivo8,9. These assays are very convincing approaches, especially when it comes to the identification of novel immunosuppressive and bone anabolic drugs. However, they only partly take into account the endoskeleton and have not been performed in a regenerative context. Thus, they do not allow the investigation of glucocorticoid-mediated effects during rapid modes of adult, regenerative bone formation.
Here, we present a protocol enabling researchers to study glucocorticoid-mediated effects on adult zebrafish bones undergoing regeneration. Injury models include partial amputation of the zebrafish caudal fin, trepanation of the skull, as well as the creation of fin ray fractures (Figure 1A-1C), and are combined with glucocorticoid exposure via incubation (Figure 1E). We have recently used a portion of this protocol to describe the consequences of exposure to prednisolone, one of the commonly prescribed corticosteroid drugs, on adult zebrafish regenerating fin and skull bone10. In zebrafish, prednisolone administration leads to decreased osteoblast proliferation, incomplete osteoblast differentiation and rapid induction of apoptosis in the monocyte/macrophage lineage10. In this protocol, we also describe how fractures can be introduced into single bony fin ray segments11, as this approach may be useful when studying glucocorticoid-mediated effects on bone occuring during fracture repair. The methods presented here will help to further address underlying mechanisms of glucocorticoid action in rapidly regenerating bone and may also be employed in other settings of systemic drug administration in the context of zebrafish tissue regeneration.
All methods described here were approved by the Landesdirektion Dresden (Permit numbers: AZ 24D-9168.11-1/2008-1, AZ 24-9168.11-1/2011-52, AZ 24-9168.11-1/2013-5, AZ 24-9168.11-1/2013-14, AZ DD24.1- 5131/354/87).
1. Preparation of Materials and Solutions
NOTE: Prednisolone, like other glucocorticoids, leads to immunosuppression. Thus, precaution must be taken to prevent infection in treated animals during the experiment. To this end, autoclave glass ware and 'fish water' (i.e., the water that is used to rear adult zebrafish) before starting the experiment.
2. Generation of Injuries in Zebrafish Fins
NOTE: To injure bone in zebrafish fins, perform resection of the fin (amputation, usually in the caudal fin) or fracture individual bony fin rays (fracture model). To this end anaesthetize adult zebrafish first.
3. Generation of Calvarial Skull Injuries (Trepanation)
NOTE: The calvariae in zebrafish are homologous to calvarial bones in mammals. Thus, these exoskeletal bones14 represent a tissue of special interest when studying the pathogenesis of GIO. To injure the skull, trepanation is performed by drilling a hole in the Os frontale and/or Os parietale (Figure 1C, 2C) with the help of a microdrill11.
4. Treatment of Zebrafish During Incubation
NOTE: During application of prednisolone/DMSO, the drug containing fish water needs to be changed daily, and zebrafish need to be fed regularly.
5. Analyses of Samples
NOTE: After incubation of injured zebrafish in prednisolone and DMSO containing fish water, respectively, either perform bone mineralization/calcification analyses (5.1 to 5.3) or carry out live imaging of zebrafish under the dissection microscope (5.4)10,11,16. Use live imaging to determine fin regenerate length and to detect differences in reporter gene expression in transgenic zebrafish.
The protocol presented here has been used repeatedly to induce rapid bone formation in the course of regeneration of the zebrafish fin and skull10,11,16. In combination with the presented method of prednisolone administration, studies on prednisolone's effects during bone regeneration can be pursued. For example, studies on bone formation and mineralization in the regenerate can be performed. Prednisolone, as other glucocorticoids19,20, leads to overall inhibition of fin regeneration, including bone formation, as detected by alizarin red staining on fixed caudal fin tissue (Figure 3A). Similarly, prednisolone has a delaying effect on (calvarial) skull injury closure, which can be illustrated by alizarin red (Figure 3B) or in vivo calcein staining. In addition, prednisolone exerts a profound anti-inflammatory effect in both fin and skull tissue, by triggering apoptosis in the monocyte/macrophage lineage. Reduced macrophage numbers can be detected by immunohistochemistry on frozen tissue sections, e.g., by using an anti-mcherry antibody in transgenic mpeg1:mCherry zebrafish (Figure 3C)10,21. Similarly, the number, distribution, proliferation and apoptosis of other cell types of interest both in the exo- and the endoskeleton (e.g., vertebrae) can be analyzed with the help of immunohistochemistry.
Figure 1: Procedures carried out in zebrafish. (A) Resection of the caudal fin (amputation) in anaesthetized zebrafish with the help of a scalpel. The red dashed line indicates the amputation level. (B) Fin ray fracture in anaesthetized zebrafish carried out with an injection needle under the stereomicroscope. The fish is laying on an agarose-coated Petri dish during the procedure. Agarose-coated Petri dishes are also used to acquire images of zebrafish fins during regeneration or fracture repair. (C) Trepanation of the calvariae (skull injury) performed in anaestetized zebrafish with the help of a microdrill under the stereomicroscope. (D) Image aquisition of regenerating skull bone after injury. The anaesthetized zebrafish is placed upright in a sponge and images are acquired with the help of a stereomicroscope. The Petri dish is filled with fish water containing 0.02% MS-222. (E) Incubation of zebrafish in prednisolone or DMSO containing fish water. Please click here to view a larger version of this figure.
Figure 2: Microscopic live view of injuries at 0 h post injury hpi). (A) Amputated caudal fin. Scale bar = 200 µm. (B) Fractured fin ray. The fracture is indicated by the red arrow. Scale bar = 100 µm. (C) Trepanated skull. The injury site is indicated by the white arrowhead. Scale bar = 500 µm. Please click here to view a larger version of this figure.
Figure 3: Representative results of prednisolone treatment in adult zebrafish. (A) Alizarin red stained fin regenerates at 14 days post amputation (dpa) and days of treatment (dt). Prednisolone treated fin regenerates are shorter (not shown), and a smaller domain of alizarin red positive bone matrix is detected. Scale bar = 500 µm. (B) Alizarin red stained skulls at 7 days post injury (dpi) and dt. Scale bar = 100 µm. This figure has been modified with permission10. (C) Cryosection view of uninjured skull and brain tissue of treated (prednisolone) and untreated (DMSO) Tg (mpeg1:mCherry) x Tg (osterix:nGFP) transgenic reporter fish, in which macrophages (innate immune cells) are labeled in red 21 and bone forming osteoblasts are labeled in green22. The number of macrophages significantly drops in prednisolone treated zebrafish. Immunohistochemistry was performed as described in Geurtzen et al.10. Nuclei are labeled in blue (DAPI). Scale bar = 20 µm. BF: bright field, epid: epidermis, bn: bone. This figure has been modified with permission10. Please click here to view a larger version of this figure.
Zebrafish have proven useful in skeletal research in many regards. Selected mutants mimic aspects of human disease such as osteogenesis imperfecta or osteoarthritis23,24,25,26,27, and larvae as well as scales are being used to identify bone anabolic compounds in small molecule screens7,28,29. Treatments of zebrafish with drugs that are applied in clinical practice are furthermore ideally suited to study putative adverse effects, for example in bone tissue. In this context, the presence of rapidly regenerating bone is advantageous to investigate the underlying mechanisms of medication-induced bone deficiencies. Here, we present a protocol in which drug treatment with the glucocorticoid prednisolone, a commonly used anti-inflammatory drug with adverse effects in bone tissue, is combined with adult bone regeneration regimes. This protocol has successfully been used to induce immunosuppressive and bone inhibitory effects in regenerative tissues of zebrafish, and can also be adapted for studies on the impact of prednisolone and other drugs in adult tissue such as the spine. The following details should be taken into account when immunosuppressive drug treatments are performed in zebrafish undergoing fin or skull regeneration.
Reproducibility of injury assays
During fin regeneration, regeneration speed (i.e., regrowth of fin tissue, including bone, per time unit) depends very much on the amount of fin tissue that is being resected13. In order to avoid unwanted variability of fin regeneration, make sure to always resect equivalent amounts of fin tissue in all specimens.
Execution of bony fin ray fractures is carried out by slightly pushing an injection needle onto the center of a chosen bony fin ray segment. As bony fin rays consist of 2 opposing hemirays, the amount of pressure used determines whether only one or both hemirays are fractured. We prefer to apply low pressure to fracture only one hemiray, because fracture of both hemirays tends to destabilize the fin ray, which as a result may detach during the following day(s).
Calvarial injuries of the skull by microdrilling should be performed cautiously. If damage is done to the brain (i.e., the cerebellum) postural and locomotory deficits will become apparent by erratic swimming of the specimen15. Zebrafish with cerebellar injury may show adverse reactions to drug treatment and should not be used to study bone regeneration.
Considerations regarding drug treatments
To produce a consistent immunosuppressive and anti-regenerative effect in adult zebrafish we employ a dose of 50 µM prednisolone in fish water. We identified this dose during initial dose-response experiments in larval and adult zebrafish. Thus, dose-response experiments should be carried out to identify the required dose of other immunosuppressive agents that might be applied. For adults, we recommend combining these initial experiments with the fin regeneration regime, as fin regenerate length is a highly sensitive and easy-to-detect readout for tissue alterations.
Immunosuppressive treatment predisposes treated specimens to microbial infections. Therefore, single housing in autoclaved beakers containing autoclaved fish water is important. Although these conditions are more cumbersome to carry out and are not sterile, they help to minimize infection in treated zebrafish. We did not pretreat ('sterilize') Artemia eggs. However, this might be an additional measure to prevent infection in zebrafish, if necessary. Furthermore, antiseptic substances such as methylene blue (1%) can be added to fish water before use.
Experiments with prednisolone, both short- and long-term, require daily changes of fish water. We have treated adult zebrafish for up to 8 weeks. Treatment of a large number of individuals for such a long time can lead to a certain experimental 'burden', and should be planned carefully. It is pivotal to always have the required amounts of autoclaved fish water and glass ware ready. Although this has not been tested in zebrafish (to our knowledge), implantation of slow release pellets for drugs of interest might represent a valuable alternative for long term drug exposure in zebrafish.
Analyses in transgenic zebrafish
Here, we present 2 methods to stain for mineralization/calcification of bone tissues by alizarin red and calcein staining. Additionally, we show how to image regenerating fin and skull tissue in vivo with the help of a stereomicroscope. The latter technique is very useful, if transgenic zebrafish reporting the number or activity of selected cells, such as osteoblasts or immune cells, are being imaged. For example, before sacrificing injured and prednisolone-treated zebrafish to perform alizarin red staining, fin regenerates or trepanated skulls undergoing repair can be photographed to look for the presence, number and activity of bone forming osteoblasts in the transgenic reporter line Tg (osterix:nGFP)22. Likewise, epidermal wound closure, which occurs within a day, can be visualized in transgenic fish, which express a fluorophore in epidermal tissue. Also, accumulation of immune cells at the site of injury (or their absence in prednisolone treated individuals) can be monitored easily with a stereomicroscope equipped with the required light source and filters.
In sum, the protocol presented here can be used to study effects of immunosuppressive agents and other drugs after systemic administration in zebrafish that are undergoing bone regeneration either in the fin or skull. This will be useful to delineate the pathogenesis of GIO and to investigate the mechanisms underlying successful bone regeneration.
The authors have nothing to disclose.
This study was supported by a grant of the Center of Regenerative Therapies Dresden ("Zebrafish as a model to unravel the mechanisms of glucocorticoid-induced bone loss") and additionally by a grant of the Deutsche Forschungsgemeinschaft (Transregio 67, project 387653785) to FK. We are very grateful to Jan Kaslin and Avinash Chekuru for their guidance and assistance on performing trepanation of the calvariae and fractures in bony fin rays. Experiments were designed, performed and analyzed by KG and FK. FK wrote the manuscript. We would also like to thank Katrin Lambert, Nicole Cudak, and other members of the Knopf and Brand labs for technical assistance and discussion. Our thanks also goes to Marika Fischer and Jitka Michling for excellent fish care and to Henriette Knopf and Josh Currie for proofreading the manuscript.
Prednisolone | Sigma-Aldrich | P6004 | |
Dimethylsulfoxid (DMSO) | Sigma-Aldrich | D8418 | |
Ethyl-3-aminobenzoate methanesulfonate (MS-222) | Sigma-Aldrich | A5040 | |
Blunt forceps | Aesculap | BD027R | |
Fine forceps | Dumont | 91150-20 | |
Scalpel | Braun | 5518059 | |
Agarose | Biozym | 840004 | |
Injection needle (0.3×13 mm) | BD Beckton Dickinson | 30400 | |
Micro drill | Cell Point Scientific | 67-1000 | distributed e.g. by Harvard Apparatus |
Steel burrs (0.5 µm diameter) | Fine Science tools | 19007-05 | |
Artemia ssp. | Sanders | 425GR | |
Pasteur pipette (plastic, Pastette) | Alpha Labs | LW4111 | |
Paraformaldehyde | Sigma-Aldrich | 158127 | |
Alizarin red S powder | Sigma-Aldrich | A5533 | |
Alcian blue 8 GX | Sigma-Aldrich | A5268 | |
Calcein | Sigma-Aldrich | C0875 | |
Trypsin | Sigma-Aldrich | T7409 | |
Stereomicroscope | Leica | MZ16 FA | with QIMAGING RETIGA-SRV camera |
Stereomicroscope | Olympus | MVX10 | with Olympus DP71 or DP80 camera |