El protocolo describe intubating pez cebra adulto con un biológico; disección y preparación del intestino para microscopía confocal, citometría y qPCR. Este método permite la administración de compuestos bioactivos para controlar la absorción intestinal y el estímulo inmunológico local evocada. Es relevante para la dinámica intestinal de profilaxis orales de la prueba.
La mayoría de patógenos invadirán organismos a través de su mucosa. Esto es particularmente cierto en los peces que están continuamente expuestas a un ambiente de agua rica en microbios. Desarrollo de métodos efectivos para la administración oral de inmunoestimulantes o vacunas, que activan el sistema inmunológico contra las enfermedades infecciosas, es altamente deseable. Al idear herramientas profilácticas, se necesitan buenos modelos experimentales para probar su funcionamiento. A continuación, os mostramos un método para la intubación por vía oral de pez cebra adulto y un conjunto de procedimientos para disecar y preparar el intestino para citometría, microscopia confocal y análisis de (qPCR) la reacción en cadena de la polimerasa cuantitativa. Con este protocolo, precisamente podemos administrar volúmenes hasta 50 μL para pescar aproximadamente 1 g de peso sencilla y rápida, sin dañar los animales. Este método nos permite explorar la absorción directa en vivo de fluorescencia con compuestos por la mucosa intestinal y la capacidad inmunomoduladora de estos productos biológicos en el sitio local después de la intubación. Combinando métodos aguas abajo como histología, qPCR, citometría de flujo y microscopia confocal del tejido intestinal, podemos entender cómo inmunoestimulantes o vacunas son capaces de cruzar las barreras de la mucosa intestinales, pasan a través de la lámina propia, y llegar a los músculos, ejerciendo un efecto sobre el sistema inmune de mucosa intestinal. El modelo podría utilizarse para probar la profilaxis oral candidato y sistemas de administración o el efecto local de cualquier compuesto bioactivo administrado por vía oral.
El objetivo de este artículo es describir en profundidad un método sencillo para la intubación por vía oral del pez cebra, junto con útiles procedimientos asociados de aguas abajo. Intubación por vía oral utilizando el pez cebra se ha convertido en un modelo práctico en el estudio de la dinámica de enfermedades infecciosas, vacuna oral/inmunoestimulante, absorción de la droga/nanopartículas y eficacia e inmunidad mucosa intestinal. Por ejemplo, pez cebra intubación por vía oral se ha utilizado en el estudio del marinum de la micobacteria y Mycobacterium peregrinum infección1. Lovmo et al. también utilizado con éxito este modelo entregar nanopartículas y M. marinum del tracto gastro-intestinal de pez cebra adulto2. Además, Chen et al. usaron intubación oral de pez cebra para mostrar que las drogas encapsulan por nanopartículas, cuando administrados a través del tracto gastro-intestinal, fueron transportados a través de la barrera de cerebro de sangre3. Estos autores realizaron intubación basada en el método de gauvage descrito por Collymore et al. 4 con algunas modificaciones. Sin embargo, no presentó un protocolo muy detallado que describe el procedimiento de intubación por vía oral. Aquí, presentamos un método para la intubación por vía oral de pez cebra adulto partiendo de Collymore et al. 4 además incluimos la preparación del intestino para el pertinente análisis aguas abajo por microscopía confocal, citometría y qPCR.
El intestino y especialmente de su mucosa es la primera línea de defensa contra la infección y el sitio principal de absorción de los nutrientes5. Cuando las células epiteliales y células presentadoras de antígeno en las barreras mucosas perciban señales de peligro, se activa una respuesta inmune innata inmediata. A continuación, la respuesta inmune adaptativa altamente específica se establece por de6,de los linfocitos T y B7. Desarrollo de vacunas orales es una zona de enfoque actual en vacunología. Las vacunas sería una herramienta eficaz para proteger el organismo en lugares expuestos debido a la respuesta específica de las células inmunes de los tejidos linfoide mucosa-asociado (Malta)8,9. En acuicultura, mucosa vacunas tienen ventajas evidentes en comparación con las vacunas inyectables. Prácticas para la vacunación masiva, requiere menos mano de obra, son menos estresantes para los peces y puede ser administradas a los peces jóvenes. Sin embargo, los candidatos de vacuna contra la mucosa deben alcanzar el segundo segmento del intestino sin ser desnaturalizado en el ambiente oral. También debe cruzar las barreras mucosa para acceder al antígeno que presenta las células (APCs) para inducir respuestas locales o sistémicos10. Por lo tanto, la prueba de la absorción mucosa mediante antígenos orales candidato y sus sistemas vectores, así como de la respuesta inmunitaria evocada, es esencial en el desarrollo de vacunas orales.
En un contexto biomédico, desarrollando un modelo para probar los efectos biológicos de compuestos después de intubación por vía oral es de creciente interés. Se conservan muchas de las características anatómicas y fisiológicas del intestino entre los linajes de hojas, con mamíferos y peces óseos11. Este modelo de intubación oral conectado para análisis de aguas abajo puede ser una herramienta para proporcionar penetraciones en la biología humana, así como un campo de pruebas para productos biológicos u otros compuestos en vivo.
El protocolo de intubación por vía oral puede realizarse por un operador, por ejemplo, administrando con éxito hasta 50 μl de la suspensión de nanopartículas de proteína pescado pesa 1 g, con una tasa alta de supervivencia. El procedimiento es fácil de configurar y rápido; 30 peces pueden ser intubados en 1 h. El protocolo para la preparación del intestino es fundamental para proporcionar muestras de células y tejidos de calidad para su posterior análisis. Se dan ejemplos de los resultados posteriores que demuestran la utilidad del protocolo en la obtención de datos relacionados con la absorción intestinal y en el aislamiento de RNA de calidad para qPCR. El protocolo sería de gran utilidad para aquellos que necesitan un modelo conveniente para probar la dinámica de la profilaxis orales u otros compuestos en el intestino.
Este protocolo es una mejora de la técnica descrita para la intubación por vía oral por Collymore et al. 4 nuestro protocolo describe detalladamente el método de intubación por vía oral e incluye la preparación del intestino para análisis posteriores. Nuestro método mejora la velocidad de manipulación de pescado permitiendo a una persona realizar el protocolo completo rápidamente, sin mucha variación entre operadores. Una principal diferencia de nuestro protocolo con la anteri…
The authors have nothing to disclose.
Este trabajo fue financiado por becas del Ministerio de ciencia, Comisión Europea y los fondos AGAUR para NR (AGL2015-65129-R MINECO/FEDER y AGAUR 2014SGR-345). RT tiene una beca predoctoral AGAUR (España), JJ fue apoyada por una beca de doctorado del Consejo de becas de China (China) y NR es apoyado por el programa de Ramón y Cajal (RYC-2010-06210, 2010, MINECO). Agradecemos el asesoramiento experto en la producción de proteína, N. Barba desde el “Servei de Microscopia” Dr. Torrealba y Dr. M. Costa del “Servei de Citometria” de la Universitat Autònoma de Barcelona asistencia técnica útil.
Silicon tube | Dow Corning | 508-001 | 0.30 mm inner diameter and 0.64 mm outer diameter |
Luer lock needle | Hamilton | 7750-22 | 31 G, Kel-F Hub |
Luer lock syringe | Hamilton | 81020/01 | 100 μL, Kel-F Hub |
Filtered pipette tip | Nerbe Plus | 07-613-8300 | 10 μL |
MS-222 | Sigma Aldrich | E10521 | powder |
10x PBS | Sigma Aldrich | P5493 | |
Filter paper | Filter-Lab | RM14034252 | |
Collagenase | Gibco | 17104019 | |
DMEM | Gibco | 31966 | Dulbecco's modified eagle medium |
Penicillin and streptomycin | Gibco | 15240 | |
Cell strainer | Falcon | 352360 | |
CellTrics filters | Sysmex Partec | 04-004-2326 (Wolflabs) | 30 µm mesh size filters with 2 mL reservoir |
Tissue-Tek O.C.T. compound | SAKURA | 4583 | |
Plastic molds for cryosections | SAKURA | 4557 | Disposable Vinyl molds. 25 mm x 20 mm x 5 mm |
Slide | Thermo Scientific | 10149870 | SuperFrost Plus slide |
Cover glasses | Labbox | COVN-024-200 | 24´24 mm |
Paraformaldehyde (PFA) | Sigma-Aldrich | 158127 | |
Atto-488 NHS ester | Sigma-Aldrich | 41698 | |
Sodium bicarbonate | Sigma-Aldrich | S5761 | |
DMSO | Sigma-Aldrich | D8418 | |
Maxwell RSC simplyRNA Tissue Kit | Promega | AS1340 | |
1-Thioglycerol/Homogenization solution | Promega | Inside of Maxwell RSC simplyRNA Tissue Kit | adding 20 μl 1-Thioglycerol to 1 ml homogenization solution (2%) |
vertical laboratory rotator | Suministros Grupo Esper | 10000-01062 | |
Cryostat | Leica | CM3050S | |
Homogenizer | KINEMATICA | Polytron PT1600E | |
Flow cytometer | Becton Dickinson | FACS Canto | |
5 mL round bottom tube | Falcon | 352058 | |
Confocal microscope | Leica | SP5 | |
Fume Hood | Kottermann | 2-447 BST | |
Nanodrop 1000 | Thermo Fisher Scientific | ND-1000 | Spectrophotometer |
Agilent 2100 Bioanalyzer System | Agilent | G2939A | RNA bioanalyzer |
Maxwell Instrument | Promega | AS4500 | |
iScript cDNA synthesis kit | Bio-rad | 1708891 | |
CFX384 Real-Time PCR Detection System | Bio-Rad | 1855485 | |
iTaq universal SYBR Green Supermix kit | Bio-rad | 172-5120 | |
Water | Sigma-Aldrich | W4502 | |
Cryogenic vial | Thermo Fisher Scientific | 375418 | CryoTube vial |
Mounting medium | Sigma-Aldrich | F6057 | Fluoroshield with DAPI |