Özet

F1의 절연-ATPase 기생 원생 생물 Trypanosoma brucei 에서

Published: January 22, 2019
doi:

Özet

이 프로토콜 설명 F1의 정화- Trypanosoma brucei의 교양된 곤충 단계에서 ATPase. 프로시저 생성 매우 순수한, 균질, 고 활성 복잡 한 구조상과 효소 연구에 적합 합니다.

Abstract

F1-ATPase는 F 형 ATP synthase, 생물 막에 걸쳐 양성자 동기 힘을 사용 하 여 아데노신 3 인산 염 (ATP)를 생산 하는 효소의 막 외부 촉매 subcomplex. 그대로 F1의 절연-ATPase는 네이티브 소스에서 효소의 단백질 구성, 운동, 변수와 감도 억제제를 특성화 하는 필수적인 전제 조건입니다. 매우 순수 하 고 균질 F1-ATPase는 ATP 합성과 가수분해의 분자 메커니즘에 대 한 통찰력을 제공 하는 구조 연구에 사용할 수 있습니다. 이 문서에서는 설명 합니다 F1의 정화에 대 한 절차- Trypanosoma brucei, 아프리카 trypanosomiases의 원인이 되는 대리인에서에서 ATPase. F1-ATPase는 침투성 세포에 생체 외에서 배양 trypanosomes에서 여는 미토 콘 드 리아 vesicles에서 격리 됩니다. 소포는 기계적으로 쥡니다와 F1에 의해 조각-ATPase는 클로 프롬 적 출에 의해 내부 미토 콘 드 리아 멤브레인에서 발표. 효소 복합물은 추가 연속 음이온 교환 및 크기 배제 크로마토그래피에 의해 정화 된다. 중요 한 질량 분석 기술을 보여주었다는 순화 된 복잡 한 거의 모든 단백질 오염 물질 없는 이며, 따라서, 엑스레이 결정학 또는 cryo 전자 현미경 검사 법에 의해 구조 결심을 위한 적당 한 물자를 나타냅니다. 격리 된 F1-ATPase 전시 ATP 가수분해 활동, 나트륨 아 지 드, F 형 ATP synthases의 강력한 억제제에 의해 완전히 저해 될 수 있습니다. 순화 된 복잡 한 실내 온도에 적어도 3 일에 대 한 안정적이 고 활성 남아 있습니다. 황산 암모늄에 의해 강 수는 장기 저장을 위해 사용 됩니다. 유사한 절차는 F1의 정화 사용 되었습니다-ATPases 포유류 및 식물 조직, 효 모, 또는 박테리아. 따라서, 제시 프로토콜 F1에 대 한 지침으로 사용할 수 있습니다-다른 유기 체에서 ATPase 격리.

Introduction

F 타입 ATP synthases는 막 도약 ATP 형성 박테리아와 미토 콘 드리 아, 엽록체의 에너지 시험 막 걸쳐 multiprotein 단지 그 몇 양성자 전 좌를 회전. ATP 합성의 회전 메커니즘의 분자 세부 정화 박테리아와 미토 콘 드리 아 ATP synthases 및 그들의 subcomplexes1의 구조 연구 때문에 주로 알려져 있습니다. F 형 ATP synthase 막 내장 고 막 외부 moieties로 구성 됩니다. F1막 외부 부분-ATPase, 포함 ATP 또는 역방향 반응은 아데노신 diphosphate (ADP)의 인 산화 발생 3 촉매 사이트. F1-ATPase 공개 될 수 있는 실험적으로 막 내장 moiety에서은, 하지만 하지, ATP를 합성 하는 기능을 유지 하면서. Fo, 라고 막 도약 분야 중재 단백질 전 좌, 효소의 중앙 부분의 회전 드라이브. F1 과 Fo 분야 중앙과 주변 줄기로 연결 된다.

첫 번째는 F1을 정화 하려고-1960 년대에 다시 싹 트는 효 모 및 소 심장 미토 콘 드리 아에서 ATPase. 이러한 프로토콜 사용 추출 쥡니다, 암모늄 또는 protamine 황산 염 강 수, 옵션 크로마토그래피 단계 및 열 처리2,3,4로 분류 한에 의해 중단 되었다 미토 콘 드리 아 ,,56. 정화는 크게 개선 하 고 클로 프롬, F1를 쉽게 해제 사용 하 여 단순화-미토 콘 드 리아 멤브레인에서 ATPase 조각7. 클로 프롬 추출 했다 다음 F1을 추출 하는 데 사용 됩니다-ATPases 다양 한 동물, 식물 및 세균성 원본 (예를 들어, 쥐 간8, 옥수수9, 식물 maculatum10병원 성 대장균 11). 더 클로 프롬 발표 F1의 정화-ATPase 선호도 또는 크기 배제 크로마토그래피 (SEC)에 의해 굴복 했다 엑스레이 결정학에 의해 고해상도 구조 결정을 위해 적당 한, 매우 순수한 단백질 복잡 한로 F1의 구조에 의해 문서화-소 심장12,13Saccharomyces cerevisiae14ATPase. F1-ATPase 구조 또한 육성 하기 어려운 유기 체에서 결정 하 고, 따라서, 초기 생물 학적 물질의 양을 제한 했다. 이 경우에는 F1에서-ATPase subunits 인위적으로 표현 되었고, 대장균에 복잡 한에 조립 및 전체 분리 효소 태그 소 단위 친화성 크로마토그래피 를 통해 에 의해 순화 되었다. 이러한 접근 방식은 F1의 결정을 주도-ATPase 구조 두 thermophilic 박테리아 종, Geobacillus stearothermophilus15 Caldalkalibacillus thermarum16, 에서 그러나 17.,이 방법론은 오히려 진 핵 F1에 적합 하지 않습니다-ATPases 이후 간결한 protheosynthetic 장치, posttranslational 처리 및 복잡 한 어셈블리에 의존.

클로 프롬 기반 추출은 이전 F1을 분리 하는 데 사용 됩니다-ATPases 단 세포 digenetic 기생충 Trypanosoma cruzi18토니 brucei19, 미국인을 일으키는 중요 한 포유류 병원 균 및 아프리카 trypanosomiases, 각각, 그리고 monogenic 곤충 기생충 Crithidia fasciculata20에서. 이 담긴 F1의 간단한 설명만 이끌어-ATPases, 다운스트림 응용 프로그램 완전히 구성, 구조, 및 복합물의 효소 속성을 특성화 하는 데 사용 했다. 이 문서에서는 설명 합니다 F1에 대 한 최적화 된 방법- 토니 brucei의 교양된 곤충 라이프 사이클 단계에서 ATPase 정화. 메서드는 소 및 효 모 F1-ATPases21,22의 격리에 대 한 설립된 프로토콜에 따라 개발 된다. 절차는 매우 순수 하 고 동종 효소 적합 체 외에서 효소 그리고 금지 분석 실험, 질량 분석23, 및 구조 결정24상세한 proteomic 특성화를 생성합니다. F1의 지식과 정화 프로토콜-ATPase 구조 원자 수준에서 화면 작은 분자 억제제, 식별 하 고 아프리카 trypanosomiases에 대 한 새로운 약물의 개발에 도움을 설계 하는 가능성을 엽니다. 또한, 프로토콜 정화 F1을 적용할 수 있습니다-다른 유기 체에서 ATPase.

Protocol

1. 버퍼 및 솔루션 아래에 나열 된 솔루션을 준비 합니다. 액체 크로마토그래피에 대 한 모든 버퍼 드 그냥 사용 하기 전에 ADP, benzamidine, 및 프로 테아 제 억제제를 추가 합니다. Aminocaproic 산 (ACA), 그리고 프로 테아 제 억제제 (10 µ M amastatin, 50 µ M bestatin, 50 µ M pepstatin, 50 µ M leupeptin, 및 50 µ M diprotin A) 염 산 (Tris HCl) ph 8.0, 0.25 M 자당 5 m m benzamidine, 5mm 버퍼 a: 50 mM Tris 버퍼를 준비 합니다.<…

Representative Results

일반적인 정화 (그림 1) T. brucei 셀25 표준에서 양식 2 x 1011 procyclic hypotonically lysed 1 x 1011 Percoll 그라데이션에 고립 된 미토 콘 드 리아 소포 (mitoplasts)로 시작 포도 당-풍부한 SDM-79 중27. mitoplasts 쥡니다, 돌 다에 의해 조각화 되 고 포함 하는 매트릭스 상쾌한 삭제 됩니다. 미토 콘 드리 아 막 클?…

Discussion

F1에 대 한 프로토콜-ATPase 정화 T. brucei 에서 개발한 F1의 분리에 따라 이전에 게시 방법-ATPase 단지 다른 종13,14에서. 메서드에 유전 수정 필요 하지 않습니다 (예를 들어, 태그) 하 고 현재 모든 소 단위와 완전히 활성화 단지 생성. 중요 한 단계는 F1의 클로 프롬 촉진 릴리스-ATPase 효소의 막 연결 부분에서. 지금까지 ?…

Açıklamalar

The authors have nothing to disclose.

Acknowledgements

이 작품은 교육 ERC CZ의 내각에 의해 투자 되었다 LL1205, 체코 공화국의 부여 기관 보조금 18-17529S, 부여 그리고 ERDF/ESF에 의해 프로젝트 pathogenicity의 기생충 (No.의 독성 연구를 위한 센터 CZ.02.1.01/0.0/0.0/16_019/0000759)입니다.

Materials

Chemicals
Adenosin Diphosphate Disodium Salt (ADP) Applichem A0948
Amastatin Hydrochloride Glantham Life Sciences GA1330
Aminocaproic Acid Applichem A2266
BCA Protein Assay Kit ThermoFischer Scientific/Pierce 23225
Benzamidine Hydrochloride Calbiochem 199001
Bestatin Hydrochloride Sigma Aldrich/Merck B8385
Chloroform Any supplier
cOmplete Tablets, Mini EDTA-free Roche 4693159001 Protease inhibitor cocktail tablets
Ethylenediaminetetraacetic Acid (EDTA) Any supplier
Hydrochloric Acid Any supplier For pH adjustment
Ile-Pro-Ile Sigma Aldrich/Merck I9759 Alias Diprotin A
Leupeptin Sigma Aldrich/Merck L2884
Magnesium Sulfate Heptahydrate Any supplier
Pepstatin A Sigma Aldrich/Merck P5318
Protein Electrophoresis System Any supplier
Sodium Chloride Any supplier
Sucrose Any supplier
Tris Any supplier
Name Company Catalog Number Yorumlar
Consumables
Centrifuge Tubes for SW60Ti, Polyallomer Beckman Coulture 328874
DounceTissues Homogenizer 2 mL Any supplier
Glass Vacuum Filtration Device Sartorius 516-7017 Degasing solutions for liquid chromatography
HiTrap Q HP, 5 mL GE Healthcare Life Sciences 17115401 Anion exchange chromatography column
Regenaretad Cellulose Membrane Filters, pore size 0.45 μm, diameter 47 mm Sartorius 18406–47——N Degasing solutions for liquid chromatography
Superdex 200 Increase 10/300 GL GE Healthcare Life Sciences 29091596 Size-exclusion chromatography column
Vivaspin 6 MWCO 100 kDa PES Sartorius VS0641
Name Company Catalog Number Yorumlar
Equipment
AKTA Pure 25 GE Healthcare Life Sciences 29018224 Or similar FPLC system
Spectrophotometer Shimadzu UV-1601 Shimadzu Or similar spectrophotometer with kinetic assay mode
Ultracentrifuge Beckman Optima with SW60Ti Rotor Beckman Coulture Or similar ultracentrifuge and rotor
Ultrasonic Homogenizer with Thin Probe, Model 3000 BioLogics 0-127-0001 Or similar ultrasonic homogenizer

Referanslar

  1. Walker, J. E., Wikström, M. Structure, mechanism and regulation of ATP synthases. Mechanisms of Primary Energy Transduction in Biology. , 338-373 (2017).
  2. Pullman, M. E., Penefsky, H. S., Datta, A., Racker, E. Partial resolution of the enzymes catalyzing oxidative phosphorylation. I. Purification and properties of soluble dinitrophenol-stimulated adenosine triphosphatase. The Journal of Biological Chemistry. 235, 3322-3329 (1960).
  3. Schatz, G., Penefsky, H. S., Racker, E. Partial resolution of the enzymes catalyzing oxidative phosphorylation. XIV. The Journal of Biological Chemistry. 242 (10), 2552-2560 (1967).
  4. Racker, E., Horstman, L. L. Partial resolution of the enzymes catalyzing oxidative phosphorylation. 13. Structure and function of submitochondrial particles completely resolved with respect to coupling factor. The Journal of Biological Chemistry. 242 (10), 2547-2551 (1967).
  5. Senior, A. E., Brooks, J. C. Studies on the mitochondrial oligomycin-insensitive ATPase. I. An improved method of purification and the behavior of the enzyme in solutions of various depolymerizing agents. Archives of Biochemistry and Biophysics. 140 (1), 257-266 (1970).
  6. Tzagoloff, A., Meagher, P. Assembly of the mitochondrial membrane system. V. Properties of a dispersed preparation of the rutamycin-sensitive adenosine triphosphatase of yeast mitochondria. The Journal of Biological Chemistry. 246 (23), 7328-7336 (1971).
  7. Beechey, R. B., Hubbard, S. A., Linnett, P. E., Mitchell, A. D., Munn, E. A. A simple and rapid method for the preparation of adenosine triphosphatase from submitochondrial particles. Biochemical Journal. 148 (3), 533-537 (1975).
  8. Tyler, D. D., Webb, P. R. Purification and properties of the adenosine triphosphatase released from the liver mitochondrial membrane by chloroform. Biochemical Journal. 178 (2), 289-297 (1979).
  9. Hack, E., Leaver, C. J. The alpha-subunit of the maize F1-ATPase is synthesised in the mitochondrion. The EMBO Journal. 2 (10), 1783-1789 (1983).
  10. Dunn, P. P., Slabas, A. R., Moore, A. L. Purification of F1-ATPase from cuckoo-pint (Arum maculatum) mitochondria. A comparison of subunit composition with that of rat liver F1-ATPase. Biochemical Journal. 225 (3), 821-824 (1985).
  11. Satre, M., Bof, M., Vignais, P. V. Interaction of Escherichia coli adenosine triphosphatase with aurovertin and citreoviridin: inhibition and fluorescence studies. Journal of Bacteriology. 142 (3), 768-776 (1980).
  12. Abrahams, J. P., Leslie, A. G., Lutter, R., Walker, J. E. Structure at 2.8 Å resolution of F1ATPase from bovine heart mitochondria. Nature. 370 (6491), 621-628 (1994).
  13. Lutter, R., et al. Crystallization of F1-ATPase from bovine heart mitochondria. Journal of Molecular Biology. 229 (3), 787-790 (1993).
  14. Kabaleeswaran, V., Puri, N., Walker, J. E., Leslie, A. G., Mueller, D. M. Novel features of the rotary catalytic mechanism revealed in the structure of yeast F1-ATPase. The EMBO Journal. 25 (22), 5433-5442 (2006).
  15. Shirakihara, Y., et al. Structure of a thermophilic F1-ATPase inhibited by an epsilon-subunit: deeper insight into the epsilon-inhibition mechanism. The FEBS Journal. 282 (15), 2895-2913 (2015).
  16. Stocker, A., Keis, S., Cook, G. M., Dimroth, P. Purification, crystallization, and properties of F1-ATPase complexes from the thermoalkaliphilic Bacillus sp. strain TA2.A1. Journal of Structural Biology. 152 (2), 140-145 (2005).
  17. Ferguson, S. A., Cook, G. M., Montgomery, M. G., Leslie, A. G., Walker, J. E. Regulation of the thermoalkaliphilic F1-ATPase from Caldalkalibacillus thermarum. Proceedings of the National Academy of Sciences of the United States of America. 113 (39), 10860-10865 (2016).
  18. Cataldi de Flombaum, M. A., Frasch, A. C. C., Stoppani, A. O. M. Adenosine triphosphatase from Trypanosoma cruzi: purification and properties. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry. 65 (1), 103-109 (1980).
  19. Williams, N., Frank, P. H. The mitochondrial ATP synthase of Trypanosoma brucei: isolation and characterization of the intact F1 moiety. Molecular and Biochemical Parasitology. 43 (1), 125-132 (1990).
  20. Higa, A. I., Cazzulo, J. J. Mg2+-activated adenosine triphosphatase from Crithidia fasciculata: purification and inhibition by suramin and efrapeptin. Molecular and Biochemical Parasitology. 3 (6), 357-367 (1981).
  21. Walker, J. E., et al. Primary structure and subunit stoichiometry of F1-ATPase from bovine mitochondria. Journal of Molecular Biology. 184 (4), 677-701 (1985).
  22. Mueller, D. M., et al. Ni-chelate-affinity purification and crystallization of the yeast mitochondrial F1-ATPase. Protein Expression and Purification. 37 (2), 479-485 (2004).
  23. Gahura, O., et al. The F1-ATPase from Trypanosoma brucei is elaborated by three copies of an additional p18-subunit. The FEBS Journal. 285 (3), 614-628 (2018).
  24. Montgomery, M. G., Gahura, O., Leslie, A. G. W., Zikova, A., Walker, J. E. ATP synthase from Trypanosoma brucei has an elaborated canonical F1-domain and conventional catalytic sites. Proceedings of the National Academy of Sciences of the United States of America. 115 (9), 2102-2107 (2018).
  25. Schneider, A., Charriere, F., Pusnik, M., Horn, E. K. Isolation of mitochondria from procyclic Trypanosoma brucei. Methods in Molecular Biology. 372, 67-80 (2007).
  26. Smith, P. K., et al. Measurement of protein using bicinchoninic acid. Analytical Biochemistry. 150 (1), 76-85 (1985).
  27. Wirtz, E., Leal, S., Ochatt, C., Cross, G. A. A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei. Molecular and Biochemical Parasitology. 99 (1), 89-101 (1999).
  28. Speijer, D., et al. Characterization of the respiratory chain from cultured Crithidia fasciculata. Molecular and Biochemical Parasitology. 85 (2), 171-186 (1997).
  29. Nelson, R. E., Aphasizheva, I., Falick, A. M., Nebohacova, M., Simpson, L. The I-complex in Leishmania tarentolae is an uniquely-structured F1-ATPase. Molecular and Biochemical Parasitology. 135 (2), 221-224 (2004).
  30. Carbajo, R. J., et al. How the N-terminal domain of the OSCP subunit of bovine F1Fo-ATP synthase interacts with the N-terminal region of an alpha subunit. Journal of Molecular Biology. 368 (2), 310-318 (2007).
  31. Bowler, M. W., Montgomery, M. G., Leslie, A. G., Walker, J. E. Ground state structure of F1-ATPase from bovine heart mitochondria at 1.9 Å resolution. The Journal of Biological Chemistry. 282 (19), 14238-14242 (2007).

Play Video

Bu Makaleden Alıntı Yapın
Gahura, O., Zíková, A. Isolation of F1-ATPase from the Parasitic Protist Trypanosoma brucei. J. Vis. Exp. (143), e58334, doi:10.3791/58334 (2019).

View Video