Plasmonic gold nanorods can be trapped in liquids and rotated at kHz frequencies using circularly-polarized optical tweezers. Introducing tools for Brownian dynamics analysis and light scatteringspectroscopy leads to a powerful system for research and application in numerous fields of science.
The possibility to generate and measure rotation and torque at the nanoscale is of fundamental interest to the study and application of biological and artificial nanomotors and may provide new routes towards single cell analysis, studies of non-equilibrium thermodynamics, and mechanical actuation of nanoscale systems. A facile way to drive rotation is to use focused circularly polarized laser light in optical tweezers. Using this approach, metallic nanoparticles can be operated as highly efficient scattering-driven rotary motors spinning at unprecedented rotation frequencies in water.
In this protocol, we outline the construction and operation of circularly-polarized optical tweezers for nanoparticle rotation and describe the instrumentation needed for recording the Brownian dynamics and Rayleigh scattering of the trapped particle. The rotational motion and the scattering spectra provides independent information on the properties of the nanoparticle and its immediate environment. The experimental platform has proven useful as a nanoscopic gauge of viscosity and local temperature, for tracking morphological changes of nanorods and molecular coatings, and as a transducer and probe of photothermal and thermodynamic processes.
The methods presented in this article replicates those used in our previous work1 to study nanoscale photothermal effects influencing light-driven gold nanorod rotary motors. Variants of the experimental platform has been used in several related publications2,3,4,5,6,7,8,9.
Optical tweezers are widely used for controlling position, force and linear momentum transfer at small length scales in physics, biology, and engineering10,11,12,13,14. Angular momentum carried by circularly polarized light can be employed for additional motion control because it continuously transfer torque to trapped objects15. By combining optical linear and angular momentum transfer, it is then possible to construct non-invasive rotary nanomotors with potential for diverse applications, such as drug delivery into single cells16,17, nanoscale surgery18, and active nanofluidics19, amongst others.
By using metallic nanoparticles as the subject of light driven manipulation, one can exploit the advantages of localized surface plasmon resonances (LSPR's), which provide large optical cross sections, high sensitivity to environmental changes, and large field enhancements20,21,22,23. This has led to a wealth of studies at the boundary between plasmonics and optical manipulation8,24,25,26,27. The strong light-matter interaction provided by LSPR has enabled us to design a platform where circularly polarized laser tweezers are capable of driving gold nanorods to spin at record rotation frequencies in water2. By tracking the Brownian motion of a rotating nanorod, detailed information about its environment and temperature can be obtained3,5. Simultaneous spectroscopic analysis provides an additional independent information channel for analysing local temperature and the morphological stability of the rotating nanorod1. A range of systems and configurations have been used for studying and applying rotary motion in optical tweezers, generating important insights within the field15,28,29,30,31,32. However, most of these studies have dealt with objects several micrometers in diameter while a single nanorod gives access to the nanometer size regime. Furthermore, when gold nanorods are used as the rotary nanomotor, torque is efficiently transferred mainly via scattering2,33. This decreases the risk of overheating the trapped particle3,34,35.
In the following method, we outline the steps required to build a system capable of efficient optical trapping and rotation of metal nanoparticles. The gold nanorods considered in these studies have high scattering cross sections, and the radiation pressure turns out to be stronger than the counteracting gradient force in the propagation direction. To still confine the particles in 3D, we utilize the force balance between Coulomb repulsion from a glass surface and the laser scattering force in the propagation direction. This 2D-trapping configuration greatly expands the range of trappable particles, as compared to standard 3D optical tweezers, and it can be easily combined with dark-field optical imaging and spectroscopy.
A trapped and rotating metal nanoparticle interacts with its environment, and detailed information about this interaction is contained in its motion and spectral properties. After describing how to construct the circularly polarized optical tweezers, we therefore also outline how to integrate instrumentation for probing rotational dynamics and for measuring Rayleigh scattering spectra in the experimental setup. The result is a versatile platform for studies of nanoscale rotation phenomena in physics, chemistry, and biology.
This protocol assumes that the researcher has access to suitable colloidal metal nanoparticles, preferably single crystalline gold nanorods. Gold nanorods can be purchased from specialized companies or synthesized in house using wet-chemistry methods. The nanorods used in our experiments were made by the seed-mediated growth method described in Ye et al. 201336. It is advantageous if the morphology and optical properties of the nanoparticles are well characterized, for example using scanning electron microscopy (SEM) and optical extinction measurements. Figure 1 displays data recorded from such measurements for representative nanorod types1.
An outline of the protocol is as follows: In the first section, we describe the construction of the optical tweezers based on circular polarization. In the second section, we describe how to extract information from the nanomotor by recording its rotational dynamics and scattering properties. The rotation frequency and the rotational Brownian motion of the trapped particle is measured using photon correlation spectroscopy by projecting backscattered laser light filtered through a linear polarizer on a fast single-pixel detector3. By fitting the data to a theoretical autocorrelation function, both the rotation frequency and the decay time of the rotational Brownian diffusion can be extracted2,3. The optical properties of the trapped and rotating nanoparticle are measured using dark field spectroscopy, which provides complementary information on the particle and its environment. In the third section, we describe the experimental procedure for the trapping and rotation of gold nanorods.
The protocol described up to this point is a straightforward path to a functioning circularly polarized optical tweezers system for nanoparticle rotation. However, sometimes issues arise that demand additional attention. In the fourth section, we outline a few of the common problems that we have encountered and how to address them. These include issues related to nanoparticle optical properties leading to poor trap stability (4.1), low rotation frequencies due to suboptimal circular polarization caused by beamsplitter birefringence (4.2), sticking of nanoparticles at the glass surface due to insufficient Coulomb repulsion (4.3), and deviation from the characteristic autocorrelation signal (4.4).
1. Circularly Polarized Optical Tweezers for Nanoparticle Rotation
2. Instrumentation for Measurements of Rotation, Rotational Brownian Dynamics, and Spectroscopic Properties
3. Experimental Procedure
4. Troubleshooting and solution to common problems
The rotation and rotational Brownian motion of a gold nanorod that is properly trapped in the circularly polarized laser tweezers can be probed by recording light scattering intensity fluctuations (Figure 3a) using a single-pixel detector. An autocorrelation spectrum of this signal contains an oscillatory component, similar to the one shown in Figure 3b. which can be fit to a theoretical autocorrelation function. The fitting allows extraction of the rotation frequency and the autocorrelation decay time, which is related to the rotational Brownian fluctuations, of the nanorod.
As mentioned in the protocol (instruction 4.4.2), it is essential to use a sufficiently thick fiber core to collect the backscattered laser light for photon correlation spectroscopy. If this is not the case, an additional decay term related to particle translation in and out of the probe volume will be present in the correlation function, see Figure 4. Through careful analysis, this could provide more information about the system; however, it complicates the analysis of the rotational Brownian dynamics contained in the data.
To obtain correct DF scattering spectra from trapped nanoparticles, as described in section 3.5, the raw spectral data needs to be calibrated. This is done by recording the illumination lamp spectrum as well as a background spectrum (Figure 5a). When focusing intense laser light at a glass surface, such as the substrate against which the nanorods are trapped, some fluorescence might be generated (see the red spectral contribution in the background spectrum of Figure 5a). This fluorescence contamination can be reduced by using fused silica substrates. However, it is anyway highly recommended to record a background spectrum with empty optical tweezers at the correct laser power. When a scattering spectrum is recorded and all spectral components not related to the actual nanoparticle scattering have been compensated for, the spectrum can be fitted in energy scale with a bi-Lorentzian fitting function to extract information related to the LSPR peak positions (Figure 5b).
Figure 1: SEM images and ensemble extinction spectra for two representative nanoparticle batches. a) Scale bar is 200 nm. b) The blue/red bordered SEM images in a) correspond to the red/blue spectrum, respectively. The spectral peaks related to the transverse and longitudinal LSPRs are clearly distinguishable. Please click here to view a larger version of this figure.
Figure 2: Schematic illustration of optical tweezers setup for nanoparticle rotation measurements. Laser light is collimated and expanded through a Keplerian telescope, and subsequently guided to the objective through the use of two movable mirrors (M1, M2) and a beamsplitter (BS). Two waveplates in the laser path optimize the circular polarization of the optical tweezers (λ/2, λ/4). Backscattered laser light can be collected after a linear polarizer for photon correlation spectroscopy and rotational dynamics measurements. After removing the laser light, scattered white light is guided to a spectrometer or a camera. Please click here to view a larger version of this figure.
Figure 3: Representative intensity and autocorrelation data with curve fit for a trapped and rotating nanorod. a) Intensity fluctuations recorded by the single pixel detector after a linear polarizer for 1s, and a zoomed in plot of the fluctuations. b) Autocorrelated data of intensity fluctuation for a rotating gold nanorod (blue points), collected from backscattered laser light. The data shows an oscillation that decays after a few periods. The oscillation is related to the rotation frequency of the nanorod, whereas the decay is due to rotational Brownian motion. A fit to the theoretical autocorrelation function is performed (red line) to extract a rotation frequency of f = 24285 ± 45 Hz and a correlation decay time of τ0 = 40.9 ± 1.06 µs. The f and τ0 uncertainties represent 95% confidence intervals of the fit, which has a coefficient of determination (R2) of 0.9877. Please click here to view a larger version of this figure.
Figure 4: Issue with a too small probe volume in photon correlation spectroscopy measurements. a) Autocorrelation data for a rotating gold nanorod, collected using a thick (400 µm, blue data) and a thin (62.5 µm, red data) fiber. Collection using a thick fiber ensures that the nanorod is always confined within the probe volume and that the autocorrelation function measures rotational dynamics only. An additional decay term due to translational Brownian motion is present when the probe volume is insufficient. In b) and c), schematic illustrations of the effect and images of the back-illuminated collection region are shown. Scale bars are 2 µm. Please click here to view a larger version of this figure.
Figure 5: Exemplary dark field scattering spectra recorded for a gold nanorod optically trapped by 660 nm laser light. The spectral region 630-670 nm (1.85-1.97 eV) is distorted due to notch filters needed to block the trapping laser light. a) Raw scattering spectra (dark blue) displaying features that are not inherent to the scattering of the particle and should be calibrated for. These include the background spectrum (red), which contains autofluorescence excited by the highly focused laser light, and the white light excitation spectrum (orange, recorded without notch filter). After calibration, the corrected scattering spectrum (light blue) shows two distinct LSPR peaks as expected. The arrows indicate the scale for each spectrum. b) Scattering spectrum for a trapped nanorod (blue points) together with a fit to the bi-Lorentzian model function (red) with its components (light blue and orange). The distorted spectral region is disregarded in the fitting of the data and the fit has an R2 of 0.9975. Please click here to view a larger version of this figure.
The optical trapping setup described in this protocol is built around a commercial inverted microscope and uses red laser light. However, the techniques outlined are versatile and can be used to construct circularly polarized optical tweezers around most commercial or home-built microscopes, both upright and inverted, with only slight alterations. The trapping laser wavelength can be chosen within a wide visible–NIR spectrum, as long as the rest of the optical components and detectors are functional at this specific wavelength. Nevertheless, when choosing a laser wavelength, the size and spectral vicinity to resonances of the particles to be manipulated should be considered because this will affect the optical trapping forces and rotation performance2,5, the magnitude of photothermal effects1, and the trapping stability26. We have previously successfully worked with circularly polarized laser tweezers using laser wavelengths of 660, 785, 830, and 1064 nm.
One of the most important components of the optical trapping setup is the microscope objective. The objective in this protocol is a dry objective with NA = 0.95. The use of a dry objective is experimentally a simpler realization of the setup; however, it does lead to optical aberrations due to refraction in the sample cell interfaces. In the present case, the result is a slightly enlarged focus spot (~1.2 µm) compared to the diffraction limit (~0.4 µm), but this does not significantly change the general or rotary performance of the platform. In principal, a wide range of microscope objectives can be used, provided they have good transmission at the trapping wavelength, good polarization maintenance and long enough working distance to perform trapping through a microscope cover slip and layer of water. In case of 2D trapping, the NA can be relatively low, which makes the entire experiment simpler and provides cleaner circular polarization in the focus. However, higher laser powers might be required than in case of a high NA objective. In our experience, the best performance for trapping, rotation and dark-field spectroscopy is obtained with objectives with NA 0.7-0.95, but it is possible to use lower as well as higher NA objectives.
To obtain good photon correlation measurements of rotary motion, a fast single-pixel detector is needed. Choose a detector with a bandwidth at least two, preferably ten, times higher than the expected rotation frequency multiplied by the shape degeneracy factor and high sensitivity at the trapping wavelength used. Amplified Si photodetectors, single photon counting APDs, and PMTs have been used with success in different setups in our laboratories. Additional information, for example on trap stiffness, can be obtained by measuring and analyzing particle translational displacement using well-established techniques such as power spectral analysis5. A number of previous publications describe different variants of this technique38,39. DF spectroscopy can be performed using a wide range free-space or fiber coupled spectrometers and the choice should be based on the spectral range and wavelength and temporal resolution needed for the planned study.
When performing a trapping experiment, additional particles may accidentally enter the trap. This can be detected by monitoring the rotation frequency, which will fluctuate strongly due to the disturbance. Visual inspection by DF microscopy can be used to verify the presence of an additional particle, in which case the stage can be moved to avoid further disturbance or the experiment needs to be restarted.
The system described above is a simple and efficient way to realize 2D confinement and rotation of metallic nanoparticles. However, for some applications, the extra degree of freedom for manipulation that comes with 3D trapping is important, and the current configuration is therefore a limitation. However, 3D confinement and rotation might be achievable by utilizing counter propagating laser tweezers or more exotic trapping configurations.
Although the particle and system parameters discussed here can be optimized to reduce photothermal heating to below ~15 K4, the temperature increase associated with plasmonic excitation of metal nanoparticles can be problematic in certain applications. A possible route towards further heat reduction is to use high-index dielectric nanoparticles instead of plasmonic particles. Such particles support strong Mie-type scattering resonances but at the same time exhibit low intrinsic absorption coefficients. We have recently been able to manufacture colloidal resonant Si nanoparticles that might prove useful in this respect40,41.
The authors have nothing to disclose.
This work was supported by the Knut and Alice Wallenberg Foundation, the Swedish Research Council and the Chalmers Area of Advance Nanoscience and Nanotechnology.
Gold nanoparticles | Purchased or home-grown | ||
Commersial inverted microscope | Nikon | Eclipse TI | |
Trapping laser | Cobolt | Flamenco 05-01 | 660 nm |
Objective | Nikon | CFI Plan Apo Lambda 40X | |
Laser safety googles | Thorlabs | LG4 | |
Assorted optomechanical components for mounting optics. | A range of mounts, posts and components from any company | ||
Lens 1 Keplarian telescope | Thorlabs | AC254-035-A-ML | |
Lens 2 Keplarian telescope | Thorlabs | LA1725-A-ML | |
Silver coated mirrors | Thorlabs | PF10-03-P01 | |
Kinematic mirror mounts | Thorlabs | KM100 | |
Translation stage | Thorlabs | PT1/M | Quantity: 2 |
50/50 R/T Beamsplitter | Chroma | 21000 | |
CMOS camera | Andor | Zyla 5.5 | |
Quarter waveplate (QWP, λ/4) | Thorlabs | AQWP05M-600 | |
Power meter | Thorlabs | PM100USB | |
Photodiode Power Sensors | Thorlabs | S121C | |
Linear polarizer | Thorlabs | LPVIS050 | For laser polarization measurement |
360° rotation mount | Thorlabs | RSP1/M | |
Half waveplate (HWP, λ/2) | Thorlabs | AHWP05M-600 | Used if polarization is not sufficient with only QWP |
Oil DF condenser | Nikon | C-DO Dark Field Condenser Oil | |
30/70 R/T Beamsplitter | Chroma | 21009 | |
Fast Si detector | Thorlabs | PDA36A-EC | |
Data Acquisition Module | National Instruments | USB-6361 | |
Fiber 400 µm core size | Thorlabs | M74L01 | |
xy-translation mount | Thorlabs | LM1XY/M | |
Linear polarizer | Thorlabs | LPVIS050 | |
Spectrometer | Princeton Instruments | IsoPlane SCT320 | |
CCD camera for spectrometer | Princeton Instruments | PyLoN | |
Notch filter | Semrock | NF03-658E-25 | |
Notch filter | Thorlabs | NF658-26 | |
Ultrasonic cleaner bath | Branson | Branson 3510 | |
Microscope slide | Ted Pella | 260202 | |
No. 1.5 Coverslips | VWR | 630-2873 | |
Aceton | |||
Isopropanol | |||
Basic detergent | Hellma | Hellmanex III | Cleaning if particle sticking is an issue |
Secure-Seal Spacer | Thermo Fisher | S24735 | Spacer tape with hole, for making sample cell |
Immersion Oil | Zeiss | 444960-0000-000 | |
PS beads | Microparticles GmbH | PS-R-5.0 | |
Spectrophotometer | Agilent | Cary 5000 UV-Vis-NIR | |
SEM | Zeiss | Ultra 55 FEG SEM | |
Tweezers | Any brand |