Özet

Regioselective O- glicosilação de nucleosídeos através o temporário 2', 3'-Diol proteção por um éster de Boronic para a síntese de dissacarídeo nucleosídeos

Published: July 26, 2018
doi:

Özet

Aqui, apresentamos os protocolos para a síntese de nucleosídeos dissacarídeo pelo regioselective O– glicosilação de ribonucleosides através de uma protecção temporária de seus 2′, 3′-diol partes utilizando um éster cíclico boronic. Este método aplica-se a diversos nucleosídeos desprotegidos como adenosina, guanosina, citidina, uridina, methyluridine-5 e 5-fluorouridine para dar o correspondente nucleosídeos dissacarídeo.

Abstract

Nucleosídeos dissacarídeo, que consistem em metades dissacarídeo e base, foram sabidos como um valioso grupo de produtos naturais, tendo bioactivities variadas. Embora O– glicosilação química é uma estratégia comumente benéfica para sintetizar nucleosídeos dissacarídeo, preparação de substratos tais como glycosyl doadores e aceitadores requer manipulações de grupo protegendo tedioso e uma purificação na cada etapa sintética. Entretanto, diversos grupos de pesquisa relataram que boronic e ésteres de borinic servem como uma proteção ou ativando o grupo dos derivados de carboidratos para atingir a regio e / ou stereoselective de acilação, alquilação, sililação e glicosilação. Neste artigo, vamos demonstrar o procedimento para o regioselective O– glicosilação de desprotegida ribonucleosides utilizando ácido boronic. A esterificação de 2′, 3′-diol de ribonucleosides com ácido boronic faz a protecção temporária de diol e, a seguir O– glicosilação com um doador glycosyl na presença de p– toluenesulfenyl licenças trifluormetanosulfonato, cloreto e prata a reação de regioselective do grupo 5′-hidroxila para pagar os nucleosídeos dissacarídeo. Esse método pode ser aplicado a diversos nucleosídeos, tais como a guanosina, adenosina, citidina, uridina, metyluridine-5 e 5-fluorouridine. Este artigo e o vídeo que acompanha representam informações úteis (visuais), para o O– glicosilação de nucleosídeos desprotegidos e seus análogos para a síntese de não só nucleosídeos dissacarídeo, mas também uma variedade de biologicamente relevantes derivados.

Introduction

Nucleosídeos dissacarídeo, que são conjugados de nucleosídeo e um grupo de carboidratos ligados através de um O-glicosídicas vínculo, constituem uma valiosa classe de naturalmente carboidratos derivados1,2 ,3,4,5,6,7. Por exemplo, são incorporados em macromoléculas biológicas, tais como o tRNA (ácido ribonucleico de transferência) e poly(ADP-ribose) (ADP = difosfato de adenosina), bem como em alguns agentes antibacterianos e outras substâncias biologicamente ativos (por exemplo, adenophostins, amicetins, ezomycin)5,6,8,9,10,11,12,13, 14,15,16,17,18,19. Daí, nucleosídeos dissacarídeo e seus derivados deverão ser compostos de chumbo para a pesquisa de descoberta de drogas. As metodologias para a síntese de nucleosídeos dissacarídeo são classificadas em três categorias; enzimática Oglycosylation –20,21, químico N– glicosilação5,9,16,22,23, 24e química Oglycosylation –7,9,14,16,18,19,24, 25,26,,27,28,29,30,31,32,33, 34,35,36,37. Em particular, Oquímico – glicosilação seria um método eficiente para a síntese de stereoselective e síntese em larga escala de nucleosídeos dissacarídeo. Pesquisa anterior mostrou que o O– glicosilação de 2′-desoxirribonucleosídeo 2 com o thioglycosyl doador 1, utilizando a combinação de cloreto de p– toluenesulfenyl e prata trifluormetanosulfonato, proporciona a desejado dissacarídeo nucleosídeo 3 (Figura 1A; Ar = aril e PG = grupo protegendo)38.

Na sequência destes resultados, decidimos desenvolver o O– glicosilação de ribonucleosides aplicação do sistema de promotor trifluormetanosulfonato p– toluenesulfenyl/cloreto de prata. Enquanto vários exemplos do – glicosilação de ribonucleosides parcialmente protegidas têm sido demonstradas7,9,14,16,18,19 ,24,32,33,34,35,36,37, o uso de desprotegida ou temporariamente protegido ribonucleosides como um aceitador glycosyl para O– glicosilação insignificante relatou. Portanto, o desenvolvimento de regioselective O– glicosilação de desprotegida ou temporariamente protegido ribonucleosides forneceria um método sintético mais benéfico sem proteger manipulações de grupo de ribonucleosides. Para alcançar o regioselective O– glicosilação de ribonucleosides, enfocamos os compostos de boro, porque vários exemplos de alquilação, acilação regio e / ou stereoselective, sililação e glicosilação do hidrato de carbono derivados, assistido por boronic ou ácido borinic foram relatados39,40,41,42,,43,44,45 ,46,47,,48,,49,50. Neste artigo, vamos demonstrar o procedimento para a síntese de nucleosídeos dissacarídeo utilizando regioselective O– glicosilação no grupo 5′-hidroxila de ribonucleosides através de um éster boronic intermediário. Na estratégia apresentada aqui, éster boronic intermediário 6 ia ser proporcionadas da esterificação do ribonucleoside 4 com o boronic ácido 5, que permite que o regioselective O– glicosilação na Grupo 5′-hidroxila com thioglycosyl doador 7 para dar o dissacarídeo nucleosídeo 8 (Figura 1B)51. Também estudamos a interação de um ribonucleoside e ácido boronic por espectroscopia de ressonância magnética nuclear (NMR), para observar a formação de um éster boronic. Esterificação, tornar-se um éster boronic e uma reação de glicosilação exigem condições anidras para evitar a hidrólise do éster boronic e o doador glycosyl. Neste artigo, vamos mostrar os procedimentos típicos para obter as condições anidras para reacções de glicosilação bem sucedido para pesquisadores e estudantes não somente em química, mas também em outros campos de pesquisa.

Protocol

Nota: Todos os dados experimentais [NMR, espectroscopia de infravermelha (IR), espectroscopia de massa (MS), rotações ópticas e elemental analisa dados] dos compostos sintetizados foram relatados em um anterior papel51. 1. procedimento para O- glicosilação reações Síntese de compostos α/β-12 (12 entrada na tabela 1)Nota: 1-13 de entradas na tabela 1 foram realizadas usando um procedimento semelhante….

Representative Results

Os resultados do – glicosilação de uridina 10 com thiomannoside α -9 estão resumidos na tabela 160,61. Na entrada 1, o O- glicosilação de 10 com α -9 na ausência de derivados do ácido boronic resultou na formação de uma mistura complicada. Na entrada 2, 10 e phenylboronic acid 11a fora…

Discussion

O objetivo deste manuscrito é mostrar um método conveniente e sintético para preparar nucleosídeos dissacarídeo usando ribonucleosides desprotegidos sem manipulações de grupo protegendo tedioso. Nós relatamos aqui sobre o regioselective O– glycosylations de nucleosídeos através o temporário 2′, 3′-diol proteção por um éster cíclico boronic (Figura 1B)51.

A preparação do éster cíclico bor…

Açıklamalar

The authors have nothing to disclose.

Acknowledgements

Esta pesquisa foi financiada pela grants-in-aid do Ministério da educação, cultura, esportes, ciência e tecnologia (MEXT) do Japão (n. º s 15 00408 K, 24659011, 24640156, 245900425 e 22390005 para Shin Aoki), uma subvenção a pesquisa bioquímica de Tóquio Fundação, Tóquio, Japão e pelo fundo para as áreas de investigação estratégica de TUS (Tokyo University of Science). Gostaríamos de agradecer as medições dos espectros NMR, Fukiko Hasegawa (Faculdade de Ciências Farmacêuticas, Universidade de Tokyo da ciência) para as medições da massa Noriko Sawabe (Faculdade de Ciências Farmacêuticas, Universidade de Tokyo da ciência) Espectros e Tomoko Matsuo (Instituto de pesquisa para a ciência e tecnologia, Universidade de Tokyo da ciência) para as medições das análises elementares.

Materials

Silver trifluoromethanesulfonate Nacalai Tesque 34945-61
Phenylboronic acid (contains varying amounts of anhydride) Tokyo Chemical Industry B0857
p-Methoxyphenylboronic acid Wako Pure Chemical Industries 321-69201
4-(Trifluoromethyl)phenylboronic acid (contains varying amounts of anhydride) Tokyo Chemical Industry T1788
2,4-Difluorophenylboronic acid (contains varying amounts of anhydride) Tokyo Chemical Industry D3391
Cyclopentylboronic acid (contains varying amounts of Anhydride) Tokyo Chemical Industry C2442
4-Nitrophenylboronic acid (contains varying amounts of anhydride) Tokyo Chemical Industry N0812
4-Hexylphenylboronic acid (contains varying amounts of anhydride) Tokyo Chemical Industry H1489
Adenosine Merck KGaA 862.
Guanosine Acros Organics 411130050
Cytidine Tokyo Chemical Industry C0522
Uridine Tokyo Chemical Industry U0020
5-Fluorouridine Tokyo Chemical Industry F0636
5-Methyluridine Sigma M-9885
Methylamine (40% in Methanol, ca. 9.8mol/L) Tokyo Chemical Industry M1016
N,N-dimethyl-4-aminopyridine Wako Pure Chemical Industries 044-19211
Acetic anhydride Nacalai Tesque 00226-15
Pyridine, Dehydrated Wako Pure Chemical Industries 161-18453
Acetonitrile Kanto Chemical 01031-96
1,4-Dioxane Nacalai Tesque 13622-73
Dichloromethane Wako Pure Chemical Industries 130-02457
Propionitrile Wako Pure Chemical Industries 164-04756
Molecular sieves 4A powder Nacalai Tesque 04168-65
Molecular sieves 3A powder Nacalai Tesque 04176-55
Celite 545RVS Nacalai Tesque 08034-85
Acetonitrile-D3 (D,99.8%) Cambridge Isotope Laboratories DLM-21-10
Trifluoroacetic acid Nacalai Tesque 34831-25
TLC Silica gel 60 F254 Merck KGaA 1.05715.0001
Chromatorex Fuji Silysia Chemical FL100D
Sodium hydrogen carbonate Wako Pure Chemical Industries 191-01305
Hydrochloric acid Wako Pure Chemical Industries 080-01061
Sodium sulfate Nacalai Tesque 31915-96
Chloroform Kanto Chemical 07278-81
Sodium chloride Wako Pure Chemical Industries 194-01677
Methanol Nacalai Tesque 21914-74
JEOL Always 300 JEOL Measurement of NMR
Lamda 400 JEOL Measurement of NMR
PerkinElmer Spectrum 100 FT-IR Spectrometer Perkin Elmer Measurement of IR
JEOL JMS-700 JEOL Measurement of MS
PerkinElmer CHN 2400 analyzer Perkin Elmer Measurement of elemental analysis
JASCO P-1030 digital polarimeter JASCO Measurement of optical rotation
JASCO PU-2089 Plus intelligent HPLC pump JASCO For HPLC
Jasco UV-2075 Plus Intelligent UV/Vis Detector JASCO For HPLC
Rheodyne Model 7125 Injector Sigma-Aldrich 58826 For HPLC
Chromatopac C-R8A Shimadzu For HPLC
Senshu Pak Pegasil ODS Senshu Scientific For HPLC
p-Toluenesulfenyl chloride Prepared  Ref. 38
Phenyl 6-O-acetyl-2,3,4-tri-O-benzyl-1-thio-a-D-mannopyranoside (a-9) Prepared  Ref. 52
4-Metylphenyl 2,3,4,6-tetra-O-benzoyl-1-thio-b-D-galactopyranoside (b-21) Prepared  Ref. 53
4-Metylphenyl 2,3,4,6-tetra-O-benzoyl-1-thio-b-D-glucopyranoside (b-31) Prepared  Ref. 57
4-Metylphenyl 2,3,4,6-tetra-O-benzoyl-1-thio-a-D-Mannopyranoside (a-32) Prepared  Ref. 67
6-N-Benzoyladenosine (14) Prepared  Ref. 54
2-N-Isobutyrylguanosine (16) Prepared  Ref. 55
4-N-Benzoylcytidine (20) Prepared  Ref. 56

Referanslar

  1. Kobayashi, J., Doi, Y., Ishibashi, M. Shimofuridin A, a nucleoside derivative embracing an acylfucopyranoside unit isolated from the okinawan marine tunicate Aplidium multiplicatum. The Journal of Organic Chemistry. 59, 255-257 (1994).
  2. Takahashi, M., Tanzawa, K., Takahashi, S. Adenophostins, newly discovered metabolites of penicillium brevicompactum, act as potent agonists of the inositol 1,4,5-trisphosphate receptor. The Journal of Biological Chemistry. 269, 369-372 (1994).
  3. Haneda, K. Cytosaminomycins, new anticoccidial agents produced by Strevtomvces sp. KO-8119 I. taxonomy, production, isolation and physico-chemical and biological properties. The Journal of Antibiotics. 47, 774-781 (1994).
  4. Shiomi, K., Haneda, K., Tomoda, H., Iwai, Y., Omura, S. Cytosaminomycins, new anticoccidial agents produced by Streptomyces sp. KO-8119 II. structure elucidation of cytosaminomycins A, B, C and D. The Journal of Antibiotics. 47, 782-786 (1994).
  5. Knapp, S. Synthesis of complex nucleoside antibiotics. Chemical Reviews. 95, 1859-1876 (1995).
  6. Efimtseva, E. V., Kulikova, I. V., Mikhailov, S. N. Disaccharide nucleosides as an important group of natural compounds. Journal of Molecular Biology. 43, 301-312 (2009).
  7. Huang, R. M., et al. Marine nucleosides: Structure, bioactivity, synthesis and biosynthesis. Marine Drugs. 12, 5817-5838 (2014).
  8. Efimtseva, E. V., Mikhailov, S. N. Disaccharide nucleosides and oligonucleotides on their basis. New tools for the study of enzymes of nucleic acid metabolism. Biochemistry (Moscow). 67, 1136-1144 (2002).
  9. Mikhailov, S. N., Efimtseva, E. V. Disaccharide nucleosides. Russian Chemical Reviews. 73, 401-414 (2004).
  10. Kimura, K., Bugg, T. D. H. Recent advances in antimicrobial nucleoside antibiotics targeting cell wall biosynthesis. Natural Product Reports. 20, 252-273 (2003).
  11. Winn, M., Goss, R. J. M., Kimura, K., Bugg, T. D. H. Antimicrobial nucleoside antibiotics targeting cell wall assembly: Recent advances in structure-function studies and nucleoside biosynthesis. Natural Product Reports. 27, 279-304 (2010).
  12. Takahashi, M., Kagasaki, T., Hosoya, T., Takahashi, S. Adenophostins A and B: Potent agonists of inositol-1,4,5-trisphosphate receptor produced by Penicillium brevicompactum. Taxonomy, fermentation, isolation, physico-chemical and biological properties. The Journal of Antibiotics. 46, 1643-1647 (1993).
  13. Takahashi, S., Kinoshita, T., Takahashi, M. Adenophostins A and B: Potent agonists of inositol-1,4,5-trisphosphate receptor produced by penicillium brevicompactum. Structure elucidation. The Journal of Antibiotics. 47, 95-100 (1994).
  14. Hotoda, H., Takahashi, M., Tanzawa, K., Takahashi, S., Kaneko, M. IP3 receptor-ligand. 1: Synthesis of adenophostin A. Tetrahedron Letters. 36, 5037-5040 (1995).
  15. Hirota, J., et al. Adenophostin-medicated quantal Ca2+ release in the purified and reconstituted inositol 1,4,5-trisphosphate receptor type 1. FEBS Letters. 368, 248-252 (1995).
  16. McCormick, J., et al. Structure and total synthesis of HF-7, a neuroactive glyconucleoside disulfate from the funnel-web spider Hololena curta. Journal of the American Chemical Society. 121, 5661-5665 (1999).
  17. Bu, Y. Y., Yamazaki, H., Ukai, K., Namikoshi, M. Anti-mycobacterial nucleoside antibiotics from a marine-derived Streptomyces sp. TPU1236A. Marine Drugs. 12, 6102-6112 (2014).
  18. Knapp, S., Gore, V. K. Synthesis of the ezomycin nucleoside disaccharide. Organic Letters. 2, 1391-1393 (2000).
  19. Behr, J. B., Gourlain, T., Helimi, A., Guillerm, G. Design, synthesis and biological evaluation of hetaryl-nucleoside derivatives as inhibitors of chitin synthase. Bioorganic & Medicinal Chemistry Letters. 13, 1713-1716 (2003).
  20. Binder, W. H., Kӓhlig, H., Schmid, W. Galactosylation by use of β-galactosidase: Enzymatic syntheses of disaccharide nucleosides. Tetrahedron: Asymmetry. 6, 1703-1710 (1995).
  21. Ye, M., Yan, L. -. Q., Li, N., Zong, M. -. H. Facile and regioselective enzymatic 5-galactosylation of pyrimidine 2-deoxynucleosides catalyzed by β-glycosidase from bovine liver. Journal of Molecular Catalysis B: Enzymatic. 79, 35-40 (2012).
  22. Niedballa, U., Vorbrüggen, H. A general synthesis of N-glycosides. III. Simple synthesis of pyrimidine disaccharide nucleosides. The Journal of Organic Chemistry. 39, 3664-3667 (1974).
  23. Abe, H., Shuto, S., Matsuda, A. Synthesis of the C-glycosidic analog of adenophostin A, a potent IP3 receptor agonist, using a temporary silicon-tethered radical coupling reaction as the key step. Tetrahedron Letters. 41, 2391-2394 (2000).
  24. Watanabe, K. A., et al. Nucleosides. 114. 5′-O-Glucuronides of 5-fluorouridine and 5-fluorocytidine. Masked precursors of anticancer nucleosides. Journal of Medicinal Chemistry. 24, 893-897 (1981).
  25. Khan, S. H., O’Neill, R. A. . Modern Methods in Carbohydrate Synthesis. , (1996).
  26. Lindhorst, T. K. . Essentials ofCarbohydrate Chemistry and Biochemistry. , (2007).
  27. Demchenko, A. V. . Handbook of Chemical Glycosylation. , (2008).
  28. Chen, X., Halcomb, R. L., Wang, P. G. Chemical Glycobiology (ACS Symposium Series 990). American Chemical Society. , (2008).
  29. Toshima, K., Tatsuta, K. Recent progress in O-glycosylation methods and its application to natural products synthesis. Chemical Reviews. 93, 1503-1531 (1993).
  30. Ito, Y. My stroll in the backyard of carbohydrate chemistry. Trends in Glycoscience and Glycotechnology. 22, 119-140 (2010).
  31. Yasomanee, J. P., Demchenko, A. V. From stereocontrolled glycosylation to expeditious oligosaccharide synthesis. Trends in Glycoscience and Glycotechnology. 25, 13-41 (2013).
  32. Nakamura, M., Fujita, S., Ogura, H. Synthesis of disaccharide nucleoside derivatives of 3-deoxy-ᴅ-glycero-ᴅ-galacto-2-nonulosonic acid (KDN). Chemical and Pharmaceutical Bulletin. 41, 21-25 (1993).
  33. Mikhailov, S. N., et al. Studies on disaccharide nucleoside synthesis. Mechanism of the formation of trisaccharide purine nucleosides. Nucleosides & Nucleotides. 18, 691-692 (1999).
  34. Lichtenthaler, F. W., Sanemitsu, Y., Nohara, T. Synthesis of 5′-O-glycosyl-ribo-nucleosides. Angewandte Chemie International Edition. 17, 772-774 (1978).
  35. Knapp, S., Gore, V. K. Synthesis of the shimofuridin nucleoside disaccharide. The Journal of Organic Chemistry. 61, 6744-6747 (1996).
  36. Zhang, Y., Knapp, S. Glycosylation of nucleosides. The Journal of Organic Chemistry. 81, 2228-2242 (2016).
  37. Xing, L., Niu, Q., Li, C. Practical glucosylations and mannosylations using anomeric benzoyloxy as a leaving group activated by sulfonium ion. ACS Omega. 2, 3698-3709 (2017).
  38. Aoki, S., et al. Synthesis of disaccharide nucleosides by the O-glycosylation of natural nucleosides with thioglycoside donors. Chemistry – An Asian Journal. 10, 740-751 (2015).
  39. Duggan, P. J., Tyndall, E. M. Boron acids as protective agents and catalysts in synthesis. Journal of the Chemical Society, Perkin Transactions 1. , 1325-1339 (2002).
  40. Yamada, K., Hayakawa, H., Wada, T. Method for preparation of 2′-O-alkylribonucleosides by regioselective alkylation of 2′,3′-O-(arylboronylidene) ribonucleosides. JPN. Patent. 5, (2009).
  41. Lee, D., Taylor, M. S. Borinic acid-catalyzed regioselective acylation of carbohydrate derivatives. Journal of the American Chemical Society. 133, 3724-3727 (2011).
  42. Gouliaras, C., Lee, D., Chan, L., Taylor, M. S. Regioselective activation of glycosyl acceptors by a diarylborinic acid-derived catalyst. Journal of the American Chemical Society. 133, 13926-13929 (2011).
  43. Satoh, H., Manabe, S. Design of chemical glycosyl donors: Does changing ring conformation influence selectivity/reactivity. Chemical Society Reviews. 42, 4297-4309 (2013).
  44. Liu, X., et al. 1,2-trans-1-Dihydroxyboryl benzyl S-glycoside as glycosyl donor. Carbohydrate Research. 398, 45-49 (2014).
  45. Kaji, E., et al. Thermodynamically controlled regioselective glycosylation of fully unprotected sugars through bis(boronate) intermediates. European Journal of Organic Chemistry. , 3536-3539 (2014).
  46. Nakagawa, A., Tanaka, M., Hanamura, S., Takahashi, D., Toshima, K. Regioselective and 1,2-cis-α-stereoselective glycosylation utilizing glycosyl-acceptor-derived boronic ester catalyst. Angewandte Chemie International Edition. 127, 11085-11089 (2015).
  47. Tanaka, M., Nashida, J., Takahashi, D., Toshima, K. Glycosyl-acceptor-derived borinic ester-promoted direct and β-stereoselective mannosylation with a 1,2-anhydromannose donor. Organic Letters. 18, 2288-2291 (2016).
  48. Nishi, N., Nashida, J., Kaji, E., Takahashi, D., Toshima, K. Regio- and stereoselective β-mannosylation using a boronic acid catalyst and its application in the synthesis of a tetrasaccharide repeating unit of lipopolysaccharide derived from E. Coli O75. Chemical Communications. 53, 3018-3021 (2017).
  49. Mancini, R. S., Leea, J. B., Taylor, M. S. Boronic esters as protective groups in carbohydrate chemistry: Processes for acylation, silylation and alkylation of glycoside-derived boronates. Organic & Biomolecular Chemistry. 15, 132-143 (2017).
  50. Mancini, R. S., Lee, J. B., Taylor, M. S. Sequential functionalizations of carbohydrates enabled by boronic esters as switchable protective/activating groups. The Journal of Organic Chemistry. 82, 8777-8791 (2017).
  51. Someya, H., Itoh, T., Aoki, S. Synthesis of disaccharide nucleosides utilizing the temporary protection of the 2′,3′-cis-diol of ribonucleosides by a boronic ester. Molecules. 22, 1650 (2017).
  52. Lemanski, G., Ziegler, T. Synthesis of 4-O-ᴅ-mannopyranosyl-α-ᴅ-glucopyranosides by intramolecular glycosylation of 6-O-tethered mannosyl donors. Tetrahedron. 56, 563-579 (2000).
  53. Liu, G., Zhang, X., Xing, G. A general method for N-glycosylation of nucleobases promoted by (p-Tol)2SO/Tf2O with thioglycoside as donor. Chemical Communications. 51, 12803-12806 (2015).
  54. Zhu, X. -. F., Williams, H. J., Scott, A. I. An improved transient method for the synthesis of N-benzoylated nucleosides. Synthetic Communications. 33, 1233-1243 (2003).
  55. Eisenführ, A., et al. A ribozyme with michaelase activity: Synthesis of the substrate precursors. Bioorganic & Medicinal Chemistry. 11, 235-249 (2003).
  56. Samuels, E. R., McNary, J., Aguilar, M., Awad, A. M. Effective synthesis of 3′-deoxy-3′-azido nucleosides for antiviral and antisense ribonucleic guanidine (RNG) applications. Nucleosides, Nucleotides and Nucleic Acids. 32, 109-123 (2013).
  57. France, R. R., Rees, N. V., Wadhawan, J. D., Fairbanks, A. J., Compton, R. G. Selective activation of glycosyl donors utilising electrochemical techniques: a study of the thermodynamic oxidation potentials of a range of chalcoglycosides. Organic & Biomolecular Chemistry. 2, 2188-2194 (2004).
  58. Wunderlich, C. H., et al. Synthesis of (6-13C)pyrimidine nucleotides as spin-labels for RNA dynamics. Journal of the American Chemical Society. 134, 7558-7569 (2012).
  59. Abraham, R. C., et al. Conjugates of COL-1 monoclonal antibody and β-ᴅ-galactosidase can specifically kill tumor cells by generation of 5-fluorouridine from the prodrug β-ᴅ-galactosyl-5-fluorouridine. Cellular Biophysics. 24, 127-133 (1994).
  60. Huang, X., Huang, L., Wang, H., Ye, X. -. S. Iterative one-pot synthesis of oligosaccharides. Angewandte Chemie International Edition. 43, 5221-5224 (2004).
  61. Verma, V. P., Wang, C. -. C. Highly stereoselective glycosyl-chloride-mediated synthesis of 2-deoxyglucosides. Chemistry – A European Journal. 19, 846-851 (2013).
  62. Martínez-Aguirre, M. A., Villamil-Ramos, R., Guerrero-Alvarez, J. A., Yatsimirsky, A. K. Substituent effects and pH profiles for stability constants of arylboronic acid diol esters. The Journal of Organic Chemistry. 78, 4674-4684 (2013).
  63. Wulff, G., Röhle, G. Results and problems of O-glycoside synthesis. Angewandte Chemie International Edition. 13, 157-170 (1974).
  64. Demchenko, A., Stauch, T., Boons, G. -. J. Solvent and other effects on the stereoselectivity of thioglycoside glycosidations. Synlett. , 818-820 (1997).
  65. Welch, C. J., Bazin, H., Heikkilä, J., Chattopadhyaya, J. Synthesis of C-5 and N-3 arenesulfenyl uridines. Preparation and properties of a new class of uracil protecting group. Acta Chemica Scandinavica. 39, 203-212 (1985).
  66. Tam, P. -. H., Lowary, T. L. Synthesis of deoxy and methoxy analogs of octyl α-ᴅ-mannopyranosyl-(1→6)-α-ᴅ-mannopyranoside as probes for mycobacterial lipoarabinomannan biosynthesis. Carbohydrate Research. 342, 1741-1772 (2007).
  67. Yalpani, M., Boeseb, R. The structure of amine adducts of triorganylboroxines. Chemische Berichte. 116, 3347-3358 (1983).
  68. McKinley, N. F., O’Shea, D. F. Efficient synthesis of aryl vinyl ethers exploiting 2,4,6-trivinylcyclotriboroxane as a vinylboronic acid equivalent. The Journal of Organic Chemistry. 69, 5087-5092 (2004).
  69. Iovine, P. M., Fletcher, M. N., Lin, S. Condensation of arylboroxine structures on Lewis basic copolymers as a noncovalent strategy toward polymer functionalization. Macromolecules. 39, 6324-6326 (2006).
  70. Chen, T. -. B., Huzak, M., Macura, S., Vuk-Pavlović, S. Somatostatin analogue octreotide modulates metabolism and effects of 5-fluorouracil and 5-fluorouridine in human colon cancer spheroids. Cancer Letters. 86, 41-51 (1994).
  71. Agudo, R., et al. Molecular characterization of a dual inhibitory and mutagenic activity of 5-fluorouridine triphosphate on viral RNA synthesis. Implications for lethal mutagenesis. Journal of Molecular Biology. 382, 652-666 (2008).
  72. Kirienko, D. R., Revtovich, A. V., Kirienko, N. V. A high-content, phenotypic screen identifies fluorouridine as an inhibitor of pyoverdine biosynthesis and Pseudomonas aeruginosa virulence. mSphere. 1, 00217 (2016).
  73. Wu, Q., Xia, A., Lin, X. Synthesis of monosaccharide derivatives and polymeric prodrugs of 5-fluorouridine via two-step enzymatic or chemo-enzymatic highly regioselective strategy. Journal of Molecular Catalysis B: Enzymatic. 54, 76-82 (2008).
  74. Brusa, P., et al. In vitro and in vivo antitumor activity of immunoconjugates prepared by linking 5-fluorouridine to antiadenocarcinoma monoclonal antibody. Il Farmaco. 52, 71-81 (1997).
  75. Ozaki, S., et al. 5-Fluorouracil derivatives XX.: Synthesis and antitumor activity of 5′-O.-unsaturated acyl-5-fluorouridines. Chemical and Pharmaceutical Bulletin. 38, 3164-3166 (1990).
  76. Martino, M. M., Jolimaitre, P., Martino, R. The prodrugs of 5-fluorouracil. Current Medicinal Chemistry. Anti-Cancer Agents. 2, 267-310 (2002).

Play Video

Bu Makaleden Alıntı Yapın
Someya, H., Itoh, T., Kato, M., Aoki, S. Regioselective O-Glycosylation of Nucleosides via the Temporary 2′,3′-Diol Protection by a Boronic Ester for the Synthesis of Disaccharide Nucleosides. J. Vis. Exp. (137), e57897, doi:10.3791/57897 (2018).

View Video