Özet

ヌクレオシドを介して一時 2'、3'-ジオール保護ホウ酸エステル糖ヌクレオシドの合成のためのOの位置選択的グリコシル化反応

Published: July 26, 2018
doi:

Özet

今回二糖類ヌクレオシドの合成のためのプロトコルを介してribonucleosides のO位置選択的グリコシル化反応での一時的な保護、2’、3′-ジオール部分繰返しホウ酸エステルを利用しました。このメソッドは、いくつかの無防備なヌクレオシド アデノシン, グアノシン、シチジン、ウリジン、5-メチルウリジン, 対応する糖ヌクレオシドを与える 5 fluorouridine などに適用されます。

Abstract

二糖類、核酸塩基の部分から成って、二糖類ヌクレオシドは、多種多様な生物活性を有する天然物の貴重なグループとして知られています。面倒な保護グループの操作とで精製糖供与体と受容体などの基板の準備が必要です化学O糖鎖は糖ヌクレオシドの合成よく有益な戦略が、各合成のステップ。一方、いくつかの研究グループが、ボロン報告し、borinic エステルが、保護または位置および立体選択的アシル化、アルキル化、シリル化、グリコシル化反応を達成するために糖誘導体のグループをアクティブにします。この記事では、ボロン酸を利用した保護されていない ribonucleosides のO位置選択的グリコシル化反応の手順を示します。2′ のエステル化、ボロン酸と ribonucleosides の 3′-ジオールは、 ptoluenesulfenyl の存在下で糖のドナーとジオール、次 o-グリコシレーションの一時的な保護塩化と銀トリフラート、許可二糖類ヌクレオシドを余裕に 5′-ヒドロキシル グループの位置選択的反応。このメソッドは、グアノシン、アデノシン、シチジン、ウリジン、5-metyluridine、5 fluorouridine などの様々 なヌクレオシドに適用でした。この記事と付属のビデオ無防備なヌクレオシドのO糖鎖についての役に立つ (ビジュアル) と糖ヌクレオシドのみならず、さまざまな生物学的関連性の合成、類縁を表します誘導体。

Introduction

ヌクレオシドと糖鎖の複合体である二糖類ヌクレオシド リンク経由で O-グリコシド結合、貴重な天然糖誘導体1,2 クラスを構成します。、3,4,5,6,7。例えば、彼らは tRNA (転送リボ核酸) や poly(ADP-ribose) などの生体高分子に組み込まれている (ADP = アデノシン二リン酸)、同様に、いくつかの抗菌薬とその他の生理活性物質 (例えば、adenophostins、amicetins、ezomycin)5,6,8,9,1011,12,13 14,15,16,17,18,19。したがって、糖ヌクレオシド及びその誘導体は、鉛化合物の創薬研究をする予定です。二糖類のヌクレオシドの合成のための方法論は 3 つのカテゴリーに分類されます。酵素O糖鎖修飾20,21, 化学N– グリコシル化反応5,9,16,22,23 24, と化学O糖鎖修飾7,9,14,16,18,19,24 25,26,27,28,29,30,31,32,33 34,35,36,37。特に、化学 o-グリコシレーション立体選択的合成と糖ヌクレオシドの大量合成のための効率的な方法になります。前の研究は 2′-デオキシリボヌクレオシド合成2と、thioglycosyl ドナー 1p– toluenesulfenyl 塩化とトリフラート、銀の組み合わせを使用してのO糖鎖を与えることを示している、二糖類ヌクレオシド3 (図 1A; を使用を希望Ar = アリール、PG = 保護グループ)38

以下のこれらの結果、 p– toluenesulfenyl 塩化/シルバー トリフラート プロモーター システムを適用する ribonucleosides のO糖鎖を開発しました。部分的に保護された ribonucleosides のO糖鎖のいくつかの例が示された7,9,14,16,18,をされている19 ,24,32,33,34,35,36,37、保護されていない、または一時的に保護の使用O糖鎖の糖受容体として ribonucleosides は、無視できるほど報告されています。したがって、保護されていない、または一時的に保護 ribonucleosides O位置選択的グリコシル化反応の開発と ribonucleosides のグループの操作を保護することがなくより有益な合成法を提供しました。Ribonucleosides のO位置選択的グリコシル化反応を達成するために我々 に焦点を当ててホウ素化合物ので位置および立体選択的アシル化、アルキル化、シリル化、および炭水化物の糖鎖のいくつかの例ボロンの援助を受けて誘導体または borinic 酸がずっと報告39,40,41,42,43,44,45 46,47,48,49,50。この記事では、ribonucleosides経由でホウ酸エステル中間の 5′-ヒドロキシル グループでO位置選択的グリコシル化反応を利用した二糖類ヌクレオシドの合成手順をデモンストレーションします。ここで紹介する戦略、ホウ酸エステル中間6リボヌクレオシド4ボロン酸5O位置選択的グリコシル化反応を可能にするとのエステル化反応によって与えられることだろう、二糖類ヌクレオシド8 (図 1B)51を与える thioglycosyl ドナー 7と 5′-ヒドロキシル グループ。また、ホウ酸エステルの形成を観察するための核磁気共鳴 (NMR) 分光法によるリボヌクレオシドとボロン酸の相互作用を調べた。ホウ酸エステル、糖鎖修飾反応するエステル化反応では、ホウ酸エステル、糖ドナーの加水分解を防ぐために無水条件を必要があります。この記事では、研究者・生化学のみならず他の分野で成功した糖鎖反作用のため無水条件を取得する一般的な手順を示します。

Protocol

注: 合成化合物のすべての実験データ [NMR、赤外線分光学 (IR)、質量分光 (MS)、光の回転、および元素分析データ] は、以前紙51で報告されました。 1 O- グリコシル化反応のための手続き 合成化合物の α/β-12 (表 1 に 12 エントリ)注: エントリ 1-13表 1には、同様の手順を使用して行われました。 2′, 3′ – ?…

Representative Results

表 160,61は、ウリジン10 thiomannoside α9のO糖鎖の結果をまとめたものです。エントリ 1 で α ボロン酸誘導体の不在の9と10のO糖鎖は複雑な混合物の形成で起因しました。エントリ 2 で10フェニルボロン酸11aされた混合ピリジン?…

Discussion

本稿の目的は、退屈な保護グループ操作することがなく保護されていない ribonucleosides を用いた糖ヌクレオシドの準備に便利な合成法を示すことです。ここのヌクレオシドを介して、一時 2′, 3′-ジオール保護繰返しホウ酸エステル (図 1B)51 O位置選択的グリコシル化について報告する.

中間周期のホウ酸エス…

Açıklamalar

The authors have nothing to disclose.

Acknowledgements

この研究は、(文部) 日本の科学省からの補助金によって融資された (番 15 K 00408、24659011、24640156、245900425、新青木の 22390005)、東京の生化学的研究からの助成金で財団、東京都、東京理科大学 (東京理科大学) 基金の戦略的研究分野。感謝澤邊紀子 (薬学部、東京理科大学) 長谷川富貴子 (薬学部、東京理科大学) の NMR スペクトルの測定質量の測定したいと思いますスペクトル、および元素分析測定のため朋子松尾 (東京理科大学理工学研究所)。

Materials

Silver trifluoromethanesulfonate Nacalai Tesque 34945-61
Phenylboronic acid (contains varying amounts of anhydride) Tokyo Chemical Industry B0857
p-Methoxyphenylboronic acid Wako Pure Chemical Industries 321-69201
4-(Trifluoromethyl)phenylboronic acid (contains varying amounts of anhydride) Tokyo Chemical Industry T1788
2,4-Difluorophenylboronic acid (contains varying amounts of anhydride) Tokyo Chemical Industry D3391
Cyclopentylboronic acid (contains varying amounts of Anhydride) Tokyo Chemical Industry C2442
4-Nitrophenylboronic acid (contains varying amounts of anhydride) Tokyo Chemical Industry N0812
4-Hexylphenylboronic acid (contains varying amounts of anhydride) Tokyo Chemical Industry H1489
Adenosine Merck KGaA 862.
Guanosine Acros Organics 411130050
Cytidine Tokyo Chemical Industry C0522
Uridine Tokyo Chemical Industry U0020
5-Fluorouridine Tokyo Chemical Industry F0636
5-Methyluridine Sigma M-9885
Methylamine (40% in Methanol, ca. 9.8mol/L) Tokyo Chemical Industry M1016
N,N-dimethyl-4-aminopyridine Wako Pure Chemical Industries 044-19211
Acetic anhydride Nacalai Tesque 00226-15
Pyridine, Dehydrated Wako Pure Chemical Industries 161-18453
Acetonitrile Kanto Chemical 01031-96
1,4-Dioxane Nacalai Tesque 13622-73
Dichloromethane Wako Pure Chemical Industries 130-02457
Propionitrile Wako Pure Chemical Industries 164-04756
Molecular sieves 4A powder Nacalai Tesque 04168-65
Molecular sieves 3A powder Nacalai Tesque 04176-55
Celite 545RVS Nacalai Tesque 08034-85
Acetonitrile-D3 (D,99.8%) Cambridge Isotope Laboratories DLM-21-10
Trifluoroacetic acid Nacalai Tesque 34831-25
TLC Silica gel 60 F254 Merck KGaA 1.05715.0001
Chromatorex Fuji Silysia Chemical FL100D
Sodium hydrogen carbonate Wako Pure Chemical Industries 191-01305
Hydrochloric acid Wako Pure Chemical Industries 080-01061
Sodium sulfate Nacalai Tesque 31915-96
Chloroform Kanto Chemical 07278-81
Sodium chloride Wako Pure Chemical Industries 194-01677
Methanol Nacalai Tesque 21914-74
JEOL Always 300 JEOL Measurement of NMR
Lamda 400 JEOL Measurement of NMR
PerkinElmer Spectrum 100 FT-IR Spectrometer Perkin Elmer Measurement of IR
JEOL JMS-700 JEOL Measurement of MS
PerkinElmer CHN 2400 analyzer Perkin Elmer Measurement of elemental analysis
JASCO P-1030 digital polarimeter JASCO Measurement of optical rotation
JASCO PU-2089 Plus intelligent HPLC pump JASCO For HPLC
Jasco UV-2075 Plus Intelligent UV/Vis Detector JASCO For HPLC
Rheodyne Model 7125 Injector Sigma-Aldrich 58826 For HPLC
Chromatopac C-R8A Shimadzu For HPLC
Senshu Pak Pegasil ODS Senshu Scientific For HPLC
p-Toluenesulfenyl chloride Prepared  Ref. 38
Phenyl 6-O-acetyl-2,3,4-tri-O-benzyl-1-thio-a-D-mannopyranoside (a-9) Prepared  Ref. 52
4-Metylphenyl 2,3,4,6-tetra-O-benzoyl-1-thio-b-D-galactopyranoside (b-21) Prepared  Ref. 53
4-Metylphenyl 2,3,4,6-tetra-O-benzoyl-1-thio-b-D-glucopyranoside (b-31) Prepared  Ref. 57
4-Metylphenyl 2,3,4,6-tetra-O-benzoyl-1-thio-a-D-Mannopyranoside (a-32) Prepared  Ref. 67
6-N-Benzoyladenosine (14) Prepared  Ref. 54
2-N-Isobutyrylguanosine (16) Prepared  Ref. 55
4-N-Benzoylcytidine (20) Prepared  Ref. 56

Referanslar

  1. Kobayashi, J., Doi, Y., Ishibashi, M. Shimofuridin A, a nucleoside derivative embracing an acylfucopyranoside unit isolated from the okinawan marine tunicate Aplidium multiplicatum. The Journal of Organic Chemistry. 59, 255-257 (1994).
  2. Takahashi, M., Tanzawa, K., Takahashi, S. Adenophostins, newly discovered metabolites of penicillium brevicompactum, act as potent agonists of the inositol 1,4,5-trisphosphate receptor. The Journal of Biological Chemistry. 269, 369-372 (1994).
  3. Haneda, K. Cytosaminomycins, new anticoccidial agents produced by Strevtomvces sp. KO-8119 I. taxonomy, production, isolation and physico-chemical and biological properties. The Journal of Antibiotics. 47, 774-781 (1994).
  4. Shiomi, K., Haneda, K., Tomoda, H., Iwai, Y., Omura, S. Cytosaminomycins, new anticoccidial agents produced by Streptomyces sp. KO-8119 II. structure elucidation of cytosaminomycins A, B, C and D. The Journal of Antibiotics. 47, 782-786 (1994).
  5. Knapp, S. Synthesis of complex nucleoside antibiotics. Chemical Reviews. 95, 1859-1876 (1995).
  6. Efimtseva, E. V., Kulikova, I. V., Mikhailov, S. N. Disaccharide nucleosides as an important group of natural compounds. Journal of Molecular Biology. 43, 301-312 (2009).
  7. Huang, R. M., et al. Marine nucleosides: Structure, bioactivity, synthesis and biosynthesis. Marine Drugs. 12, 5817-5838 (2014).
  8. Efimtseva, E. V., Mikhailov, S. N. Disaccharide nucleosides and oligonucleotides on their basis. New tools for the study of enzymes of nucleic acid metabolism. Biochemistry (Moscow). 67, 1136-1144 (2002).
  9. Mikhailov, S. N., Efimtseva, E. V. Disaccharide nucleosides. Russian Chemical Reviews. 73, 401-414 (2004).
  10. Kimura, K., Bugg, T. D. H. Recent advances in antimicrobial nucleoside antibiotics targeting cell wall biosynthesis. Natural Product Reports. 20, 252-273 (2003).
  11. Winn, M., Goss, R. J. M., Kimura, K., Bugg, T. D. H. Antimicrobial nucleoside antibiotics targeting cell wall assembly: Recent advances in structure-function studies and nucleoside biosynthesis. Natural Product Reports. 27, 279-304 (2010).
  12. Takahashi, M., Kagasaki, T., Hosoya, T., Takahashi, S. Adenophostins A and B: Potent agonists of inositol-1,4,5-trisphosphate receptor produced by Penicillium brevicompactum. Taxonomy, fermentation, isolation, physico-chemical and biological properties. The Journal of Antibiotics. 46, 1643-1647 (1993).
  13. Takahashi, S., Kinoshita, T., Takahashi, M. Adenophostins A and B: Potent agonists of inositol-1,4,5-trisphosphate receptor produced by penicillium brevicompactum. Structure elucidation. The Journal of Antibiotics. 47, 95-100 (1994).
  14. Hotoda, H., Takahashi, M., Tanzawa, K., Takahashi, S., Kaneko, M. IP3 receptor-ligand. 1: Synthesis of adenophostin A. Tetrahedron Letters. 36, 5037-5040 (1995).
  15. Hirota, J., et al. Adenophostin-medicated quantal Ca2+ release in the purified and reconstituted inositol 1,4,5-trisphosphate receptor type 1. FEBS Letters. 368, 248-252 (1995).
  16. McCormick, J., et al. Structure and total synthesis of HF-7, a neuroactive glyconucleoside disulfate from the funnel-web spider Hololena curta. Journal of the American Chemical Society. 121, 5661-5665 (1999).
  17. Bu, Y. Y., Yamazaki, H., Ukai, K., Namikoshi, M. Anti-mycobacterial nucleoside antibiotics from a marine-derived Streptomyces sp. TPU1236A. Marine Drugs. 12, 6102-6112 (2014).
  18. Knapp, S., Gore, V. K. Synthesis of the ezomycin nucleoside disaccharide. Organic Letters. 2, 1391-1393 (2000).
  19. Behr, J. B., Gourlain, T., Helimi, A., Guillerm, G. Design, synthesis and biological evaluation of hetaryl-nucleoside derivatives as inhibitors of chitin synthase. Bioorganic & Medicinal Chemistry Letters. 13, 1713-1716 (2003).
  20. Binder, W. H., Kӓhlig, H., Schmid, W. Galactosylation by use of β-galactosidase: Enzymatic syntheses of disaccharide nucleosides. Tetrahedron: Asymmetry. 6, 1703-1710 (1995).
  21. Ye, M., Yan, L. -. Q., Li, N., Zong, M. -. H. Facile and regioselective enzymatic 5-galactosylation of pyrimidine 2-deoxynucleosides catalyzed by β-glycosidase from bovine liver. Journal of Molecular Catalysis B: Enzymatic. 79, 35-40 (2012).
  22. Niedballa, U., Vorbrüggen, H. A general synthesis of N-glycosides. III. Simple synthesis of pyrimidine disaccharide nucleosides. The Journal of Organic Chemistry. 39, 3664-3667 (1974).
  23. Abe, H., Shuto, S., Matsuda, A. Synthesis of the C-glycosidic analog of adenophostin A, a potent IP3 receptor agonist, using a temporary silicon-tethered radical coupling reaction as the key step. Tetrahedron Letters. 41, 2391-2394 (2000).
  24. Watanabe, K. A., et al. Nucleosides. 114. 5′-O-Glucuronides of 5-fluorouridine and 5-fluorocytidine. Masked precursors of anticancer nucleosides. Journal of Medicinal Chemistry. 24, 893-897 (1981).
  25. Khan, S. H., O’Neill, R. A. . Modern Methods in Carbohydrate Synthesis. , (1996).
  26. Lindhorst, T. K. . Essentials ofCarbohydrate Chemistry and Biochemistry. , (2007).
  27. Demchenko, A. V. . Handbook of Chemical Glycosylation. , (2008).
  28. Chen, X., Halcomb, R. L., Wang, P. G. Chemical Glycobiology (ACS Symposium Series 990). American Chemical Society. , (2008).
  29. Toshima, K., Tatsuta, K. Recent progress in O-glycosylation methods and its application to natural products synthesis. Chemical Reviews. 93, 1503-1531 (1993).
  30. Ito, Y. My stroll in the backyard of carbohydrate chemistry. Trends in Glycoscience and Glycotechnology. 22, 119-140 (2010).
  31. Yasomanee, J. P., Demchenko, A. V. From stereocontrolled glycosylation to expeditious oligosaccharide synthesis. Trends in Glycoscience and Glycotechnology. 25, 13-41 (2013).
  32. Nakamura, M., Fujita, S., Ogura, H. Synthesis of disaccharide nucleoside derivatives of 3-deoxy-ᴅ-glycero-ᴅ-galacto-2-nonulosonic acid (KDN). Chemical and Pharmaceutical Bulletin. 41, 21-25 (1993).
  33. Mikhailov, S. N., et al. Studies on disaccharide nucleoside synthesis. Mechanism of the formation of trisaccharide purine nucleosides. Nucleosides & Nucleotides. 18, 691-692 (1999).
  34. Lichtenthaler, F. W., Sanemitsu, Y., Nohara, T. Synthesis of 5′-O-glycosyl-ribo-nucleosides. Angewandte Chemie International Edition. 17, 772-774 (1978).
  35. Knapp, S., Gore, V. K. Synthesis of the shimofuridin nucleoside disaccharide. The Journal of Organic Chemistry. 61, 6744-6747 (1996).
  36. Zhang, Y., Knapp, S. Glycosylation of nucleosides. The Journal of Organic Chemistry. 81, 2228-2242 (2016).
  37. Xing, L., Niu, Q., Li, C. Practical glucosylations and mannosylations using anomeric benzoyloxy as a leaving group activated by sulfonium ion. ACS Omega. 2, 3698-3709 (2017).
  38. Aoki, S., et al. Synthesis of disaccharide nucleosides by the O-glycosylation of natural nucleosides with thioglycoside donors. Chemistry – An Asian Journal. 10, 740-751 (2015).
  39. Duggan, P. J., Tyndall, E. M. Boron acids as protective agents and catalysts in synthesis. Journal of the Chemical Society, Perkin Transactions 1. , 1325-1339 (2002).
  40. Yamada, K., Hayakawa, H., Wada, T. Method for preparation of 2′-O-alkylribonucleosides by regioselective alkylation of 2′,3′-O-(arylboronylidene) ribonucleosides. JPN. Patent. 5, (2009).
  41. Lee, D., Taylor, M. S. Borinic acid-catalyzed regioselective acylation of carbohydrate derivatives. Journal of the American Chemical Society. 133, 3724-3727 (2011).
  42. Gouliaras, C., Lee, D., Chan, L., Taylor, M. S. Regioselective activation of glycosyl acceptors by a diarylborinic acid-derived catalyst. Journal of the American Chemical Society. 133, 13926-13929 (2011).
  43. Satoh, H., Manabe, S. Design of chemical glycosyl donors: Does changing ring conformation influence selectivity/reactivity. Chemical Society Reviews. 42, 4297-4309 (2013).
  44. Liu, X., et al. 1,2-trans-1-Dihydroxyboryl benzyl S-glycoside as glycosyl donor. Carbohydrate Research. 398, 45-49 (2014).
  45. Kaji, E., et al. Thermodynamically controlled regioselective glycosylation of fully unprotected sugars through bis(boronate) intermediates. European Journal of Organic Chemistry. , 3536-3539 (2014).
  46. Nakagawa, A., Tanaka, M., Hanamura, S., Takahashi, D., Toshima, K. Regioselective and 1,2-cis-α-stereoselective glycosylation utilizing glycosyl-acceptor-derived boronic ester catalyst. Angewandte Chemie International Edition. 127, 11085-11089 (2015).
  47. Tanaka, M., Nashida, J., Takahashi, D., Toshima, K. Glycosyl-acceptor-derived borinic ester-promoted direct and β-stereoselective mannosylation with a 1,2-anhydromannose donor. Organic Letters. 18, 2288-2291 (2016).
  48. Nishi, N., Nashida, J., Kaji, E., Takahashi, D., Toshima, K. Regio- and stereoselective β-mannosylation using a boronic acid catalyst and its application in the synthesis of a tetrasaccharide repeating unit of lipopolysaccharide derived from E. Coli O75. Chemical Communications. 53, 3018-3021 (2017).
  49. Mancini, R. S., Leea, J. B., Taylor, M. S. Boronic esters as protective groups in carbohydrate chemistry: Processes for acylation, silylation and alkylation of glycoside-derived boronates. Organic & Biomolecular Chemistry. 15, 132-143 (2017).
  50. Mancini, R. S., Lee, J. B., Taylor, M. S. Sequential functionalizations of carbohydrates enabled by boronic esters as switchable protective/activating groups. The Journal of Organic Chemistry. 82, 8777-8791 (2017).
  51. Someya, H., Itoh, T., Aoki, S. Synthesis of disaccharide nucleosides utilizing the temporary protection of the 2′,3′-cis-diol of ribonucleosides by a boronic ester. Molecules. 22, 1650 (2017).
  52. Lemanski, G., Ziegler, T. Synthesis of 4-O-ᴅ-mannopyranosyl-α-ᴅ-glucopyranosides by intramolecular glycosylation of 6-O-tethered mannosyl donors. Tetrahedron. 56, 563-579 (2000).
  53. Liu, G., Zhang, X., Xing, G. A general method for N-glycosylation of nucleobases promoted by (p-Tol)2SO/Tf2O with thioglycoside as donor. Chemical Communications. 51, 12803-12806 (2015).
  54. Zhu, X. -. F., Williams, H. J., Scott, A. I. An improved transient method for the synthesis of N-benzoylated nucleosides. Synthetic Communications. 33, 1233-1243 (2003).
  55. Eisenführ, A., et al. A ribozyme with michaelase activity: Synthesis of the substrate precursors. Bioorganic & Medicinal Chemistry. 11, 235-249 (2003).
  56. Samuels, E. R., McNary, J., Aguilar, M., Awad, A. M. Effective synthesis of 3′-deoxy-3′-azido nucleosides for antiviral and antisense ribonucleic guanidine (RNG) applications. Nucleosides, Nucleotides and Nucleic Acids. 32, 109-123 (2013).
  57. France, R. R., Rees, N. V., Wadhawan, J. D., Fairbanks, A. J., Compton, R. G. Selective activation of glycosyl donors utilising electrochemical techniques: a study of the thermodynamic oxidation potentials of a range of chalcoglycosides. Organic & Biomolecular Chemistry. 2, 2188-2194 (2004).
  58. Wunderlich, C. H., et al. Synthesis of (6-13C)pyrimidine nucleotides as spin-labels for RNA dynamics. Journal of the American Chemical Society. 134, 7558-7569 (2012).
  59. Abraham, R. C., et al. Conjugates of COL-1 monoclonal antibody and β-ᴅ-galactosidase can specifically kill tumor cells by generation of 5-fluorouridine from the prodrug β-ᴅ-galactosyl-5-fluorouridine. Cellular Biophysics. 24, 127-133 (1994).
  60. Huang, X., Huang, L., Wang, H., Ye, X. -. S. Iterative one-pot synthesis of oligosaccharides. Angewandte Chemie International Edition. 43, 5221-5224 (2004).
  61. Verma, V. P., Wang, C. -. C. Highly stereoselective glycosyl-chloride-mediated synthesis of 2-deoxyglucosides. Chemistry – A European Journal. 19, 846-851 (2013).
  62. Martínez-Aguirre, M. A., Villamil-Ramos, R., Guerrero-Alvarez, J. A., Yatsimirsky, A. K. Substituent effects and pH profiles for stability constants of arylboronic acid diol esters. The Journal of Organic Chemistry. 78, 4674-4684 (2013).
  63. Wulff, G., Röhle, G. Results and problems of O-glycoside synthesis. Angewandte Chemie International Edition. 13, 157-170 (1974).
  64. Demchenko, A., Stauch, T., Boons, G. -. J. Solvent and other effects on the stereoselectivity of thioglycoside glycosidations. Synlett. , 818-820 (1997).
  65. Welch, C. J., Bazin, H., Heikkilä, J., Chattopadhyaya, J. Synthesis of C-5 and N-3 arenesulfenyl uridines. Preparation and properties of a new class of uracil protecting group. Acta Chemica Scandinavica. 39, 203-212 (1985).
  66. Tam, P. -. H., Lowary, T. L. Synthesis of deoxy and methoxy analogs of octyl α-ᴅ-mannopyranosyl-(1→6)-α-ᴅ-mannopyranoside as probes for mycobacterial lipoarabinomannan biosynthesis. Carbohydrate Research. 342, 1741-1772 (2007).
  67. Yalpani, M., Boeseb, R. The structure of amine adducts of triorganylboroxines. Chemische Berichte. 116, 3347-3358 (1983).
  68. McKinley, N. F., O’Shea, D. F. Efficient synthesis of aryl vinyl ethers exploiting 2,4,6-trivinylcyclotriboroxane as a vinylboronic acid equivalent. The Journal of Organic Chemistry. 69, 5087-5092 (2004).
  69. Iovine, P. M., Fletcher, M. N., Lin, S. Condensation of arylboroxine structures on Lewis basic copolymers as a noncovalent strategy toward polymer functionalization. Macromolecules. 39, 6324-6326 (2006).
  70. Chen, T. -. B., Huzak, M., Macura, S., Vuk-Pavlović, S. Somatostatin analogue octreotide modulates metabolism and effects of 5-fluorouracil and 5-fluorouridine in human colon cancer spheroids. Cancer Letters. 86, 41-51 (1994).
  71. Agudo, R., et al. Molecular characterization of a dual inhibitory and mutagenic activity of 5-fluorouridine triphosphate on viral RNA synthesis. Implications for lethal mutagenesis. Journal of Molecular Biology. 382, 652-666 (2008).
  72. Kirienko, D. R., Revtovich, A. V., Kirienko, N. V. A high-content, phenotypic screen identifies fluorouridine as an inhibitor of pyoverdine biosynthesis and Pseudomonas aeruginosa virulence. mSphere. 1, 00217 (2016).
  73. Wu, Q., Xia, A., Lin, X. Synthesis of monosaccharide derivatives and polymeric prodrugs of 5-fluorouridine via two-step enzymatic or chemo-enzymatic highly regioselective strategy. Journal of Molecular Catalysis B: Enzymatic. 54, 76-82 (2008).
  74. Brusa, P., et al. In vitro and in vivo antitumor activity of immunoconjugates prepared by linking 5-fluorouridine to antiadenocarcinoma monoclonal antibody. Il Farmaco. 52, 71-81 (1997).
  75. Ozaki, S., et al. 5-Fluorouracil derivatives XX.: Synthesis and antitumor activity of 5′-O.-unsaturated acyl-5-fluorouridines. Chemical and Pharmaceutical Bulletin. 38, 3164-3166 (1990).
  76. Martino, M. M., Jolimaitre, P., Martino, R. The prodrugs of 5-fluorouracil. Current Medicinal Chemistry. Anti-Cancer Agents. 2, 267-310 (2002).

Play Video

Bu Makaleden Alıntı Yapın
Someya, H., Itoh, T., Kato, M., Aoki, S. Regioselective O-Glycosylation of Nucleosides via the Temporary 2′,3′-Diol Protection by a Boronic Ester for the Synthesis of Disaccharide Nucleosides. J. Vis. Exp. (137), e57897, doi:10.3791/57897 (2018).

View Video