Agregación de la proteína provoca estrés oxidativo celular. Este protocolo describe un método de control de los Estados intracelulares de proteínas amyloidogenic y el estrés oxidativo asociado con ellos, mediante citometría de flujo. El enfoque se utiliza para estudiar el comportamiento de las variantes soluble y propensa a la agregación del péptido amiloide-β.
Mal plegamiento de proteínas y acumulación en conformaciones amiloides han sido relacionadas con la aparición y progresión de varias enfermedades neurodegenerativas. Sin embargo, todavía hay poca información sobre cómo insoluble proteína agregados ejercen sus efectos tóxicos in vivo. Organismos modelo simples de procariotas y eucariotas, tales como bacterias y levadura, han contribuido significativamente a nuestra actual comprensión de los mecanismos detrás de la formación amiloide intracelular, la propagación de agregados y la toxicidad. En el presente Protocolo, el uso de levadura se describe como un modelo para analizar la relación entre la formación de agregados proteicos y su impacto sobre el estrés oxidativo celular. El método combina la detección del estado intracelular soluble/agregados de una proteína amyloidogenic con la cuantificación del daño oxidativo celular resultantes de su expresión mediante citometría de flujo (FC). Este enfoque es simple, rápida y cuantitativa. El estudio ilustra la técnica al correlacionar el estrés oxidativo celular causado por un amplio conjunto de variantes de péptido amiloide-β con sus propensiones respectiva agregación intrínseca.
Proteostasis es un determinante fundamental de los procesos de acondicionamiento físico y el envejecimiento celular. En las células, se mantiene la homeostasis de proteínas por control de calidad de la proteína sofisticadas redes destinadas a asegurar la correcta refolding de Conformadores de proteínas mal plegadas por acompañantes o su proteólisis específica con varios mecanismos bien conservados1 ,2,3,4,5. Un gran número de estudios proporciona apoyo a la relación entre el inicio y la progresión de una amplia gama de enfermedades humanas y la falta de proteostasis, llevando a mal plegamiento de proteínas y agregación. Por ejemplo, la presencia de depósitos de proteína se considera una característica patológica de muchas enfermedades neurodegenerativas, como Alzheimer, Parkinson y Huntington enfermedades6,7,8, enfermedades prionogenic y amiloidosis no degenerativas9. Se ha sugerido que temprana asambleas oligomeric y protofibrillar en la reacción de agregación son los elicitores principal de citotoxicidad, establecer aberrantes interacciones con otras proteínas en el medio celular lleno de gente10. Además, inclusiones de proteína (PI) pueden transmitirse entre las células, propagando su efecto tóxico11,12. Por lo tanto, podría ser que la formación de PI de hecho podría constituir un mecanismo de desintoxicación que restringe la presencia de especies peligrosas agregadas a lugares específicos en la célula, donde pueden ser procesados o acumulados sin efectos secundarios importantes 13 , 14.
Estándar en vitro bioquímicos enfoques han aportado importante información sobre las diferentes especies que pueblan las reacciones de agregación y sus propiedades15,16. Sin embargo, las condiciones utilizadas en estos ensayos son claramente diferentes de los que ocurren dentro de la célula y, por lo tanto, cuestionan su importancia fisiológica. Debido a la notable conservación de vías celulares como control de calidad de la proteína, la autofagia o la regulación de redox celular estado17,18 entre eucariotas19,20,21 ,22,23, la levadura de florecimiento Saccharomyces cerevisiae (S. cerevisiae) ha surgido como un simple modelo celular privilegiado para el estudio de los determinantes moleculares de la agregación de proteínas y sus efectos citotóxicos asociados en entornos biológicamente relevantes24,25,26.
Propensión de agregación de la proteína es una característica intrínsecamente codificada en la secuencia primaria. Así, la formación de amiloide-como las estructuras se puede predecir basado en la identificación y evaluación de la potencia de promover la agregación de polipéptidos27regiones. Sin embargo, a pesar del éxito de bioinformáticas algoritmos para predecir las propiedades de agregación en vitro de secuencias de proteínas, son aún muy lejos de pronosticar cómo estas propensiones traducen en vivo impacto citotóxico. Estudios que aborden la relación entre el estado agregado de una proteína dada y su asociado daño celular de forma sistemática pueden ayudar a eludir esta limitación computacional. Esta conexión se aborda en el presente estudio, tomando ventaja de un amplio conjunto de variantes del péptido amiloide-β Aβ42 difieren sólo en un único residuo, pero mostrando un rango continuo de agregación propensiones en vivo28de. En particular, se describe un enfoque basado en FC para identificar las especies conformacionales responsables del daño oxidativo provocado por propensas a la agregación de proteínas en las células de levadura. La metodología ofrece muchas ventajas tales como simplicidad, capacidad de alto rendimiento y precisión para la medición cuantitativa. Este enfoque permitió confirmar ese juego un papel protector contra el estrés oxidativo de la PI.
Una amplia gama de enfermedades está ligada a la acumulación de proteínas mal plegadas en depósitos celulares6,7,8,33. Se han hecho muchos esfuerzos para desentrañar los mecanismos moleculares que desencadenan la aparición de estas enfermedades usando el enfoque computacional, que no tienen en las concentraciones de proteína de cuenta, o en la vitro se acerca, en la que la conce…
Yeast cells BY4741 | ATCC | 201388 | Genotype: MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 |
pESC(-Ura) plasmid | Agilent Genomics | 217454 | Yeast expression plasmid with a Gal promotor. Selectable marker URA3 |
Yeast Synthetic Drop-out Medium Supplements | Sigma | Y1501 | Powder |
Yeast Nitrogen Base Without Amino Acids | Sigma | Y0626 | Powder |
Raffinose | Sigma | R7630 | Powder |
Glucose | Sigma | G7021 | Powder |
Galactose | Sigma | G0750 | Powder |
Phosphate Buffered Saline (PBS) | Fisher Scientific | BP3991 | Solution 10X |
CellROX Deep Red Reagent | Life Technologies | C10422 | Free radical cell-permeant fluorescent sensor, non-fluorescent while in a reduced state, and exhibits bright fluorescence upon oxidation by reactive oxygen species (ROS), with absorption/emission maxima at 644/665 nm. |
Y-PER protein extraction reagent | Thermo Scientific | 78990 | Liquid cell lysis buffer |
Acrylamide/Bis-acrylamide | Sigma | A6050 | Solution |
Bradford dye reagent | Bio-Rad | 5000205 | Dye reagent for one-step determination of protein concentration |
β-amyloid antibody 6E10 | BioLegend | 803001 | Mouse IgG1. The epitope lies within amino acids 3-8 of beta amyloid (EFRHDS). |
Goat anti-mouse IgG-HRP conjugate | Bio-Rad | 1721011 | |
Membrane Immobilon-P, PVDF | Millipore | IPVH00010 | |
Luminata forte | Merk | WBLUF0100 | Premixed, ready to use chemiluminescent HRP detection reagent |
Phenylmethanesulfonyl fluoride solution (PMSF) | Sigma | 93482 | Protease inhibitor. Dissolved at 0.1 M in ethanol |
FACSCanto flow cytometer | BD Biosciences | 657338 | Equipped with a 488 nm blue laser for the detection of GFP, and 635 nm red laser / 530/30 nm BP filter and 660/20 BP filter |
Mini Trans-Blot Electrophoresis Transfer cell | Bio-Rad | 1703930 | Protein transference system |
Mini-PROTEAN Tetra Handcast Systems | Bio-Rad | 1658000FC | Electrophoresis system |