Мы представляем протокол для сравнения состояния минералов в везикулы, выпущенное две человеческие кости клеточных линий: hFOB 1.19 и Saos-2. Их минерализации профили были проанализированы по ализарин красный-S (AR-S) окрашивание, ультрафиолетового (УФ) света визуализации, передачи изображений электронной микроскопии (ТЕА) и энергии, дисперсионный рентгеновский микроанализ (EDX).
Это видео представляет использование просвечивающей электронной микроскопии с энергии, дисперсионный рентгеновский микроанализ (ТЕА-EDX) для сравнения состояния минералов в везикулы, выпущенное две человеческие кости клеточных линий: hFOB 1.19 и Saos-2. Эти клеточные линии, после лечения с аскорбиновой кислотой (AA) и β-Глицерофосфат (β-GP), пройти полный Остеогенные transdifferentiation от распространения к минерализации и производим Матричные везикулы (МВС) которые вызывают нуклеации апатита в внеклеточная матрица (ECM).
Основываясь на окрашивание ализарин красный-S (AR-S) и анализ состава минералов в lysates клетки с помощью ультрафиолетового (УФ) света или пузырьки с помощью изображений ТЕА, следуют EDX количественный и Ион сопоставления, можно заключить, что остеосаркома Saos-2 и osteoblastic hFOB 1.19 клетки раскрыть собственный минерализации профили. Saos-2 клетки минерализации более эффективно, чем hFOB 1.19 клетки и производят больше полезных ископаемых, которые не видны под УФ света, но похожи на гидроксиапатита (га) в том, что они имеют больше Ca и F замен.
Результаты, полученные с помощью этих методов позволяет нам заключить, что процесс минерализации отличается в зависимости от типа ячейки. Мы предлагаем, что, на клеточном уровне, происхождение и свойства везикулы предопределить тип минералов.
Кость — это тип соединительной ткани, состоящей из двух частей: органические (клетки и коллагеновые волокна) и минеральных (соединений кальция и фосфата). Основные минеральные компоненты в кости, Апатиты1. Различные типы минерализации компетентных клеток в кости (остеобласты), зубы (odontoblasts) и хряща (хондроцитов) регулируют первоначальные шаги минерализации, производя белков внеклеточного матрикса (ECM) и выпускать матрица везикулы (МВС) (рис. 1). МВС являются 100-300 Нм диаметр пузырьков, которые накапливаются кальция и фосфатов, содействия апатита нуклеации и впоследствии связать коллаген2,3. Затем MVs дезинтегрируют выпустить апатитов внеклеточных среды. Апатиты продолжают расти при контакте с коллагеновых волокон и формируют костной матрицы. Минерализация подкрепляется постоянные поставки P,я и Ca2 + в внеклеточных среды. Некоторые недавно опубликованные данные поддерживают нашу модель4,5. Мягких тканей не минерализации в физиологических условиях. Однако эктопической кальцификации может произойти в патологических условиях например сосудистой кальцификации3. Сосудистые клетки, которые приобретают остеобластов фенотипом могут производить MVs, которые вызывают нуклеации апатитов и инициировать минерализации в медиальной и интимы слои стенки кровеносных сосудов. Начиная с эктопической кальцификации напоминают нормальный endochondral минерализация3, понимание молекулярных механизмов минерализация костных клеток и хондроцитов следует обеспечить некоторые подсказки на Эктопическая кальцификация мягких тканей, которые являются сформирован.
Развитие скелетных тканей регулируется различные ферменты, факторы роста и промоутеров или ингибиторов минерализации. Антагонистическое действие ткани неспецифические щелочной фосфатазы (TNAP) (рис. 1) и ectonucleotide пирофосфатаза/фосфодиэстеразы я (NPP1), вместе с Анкирины (АНК), контролирует концентрации неорганических пирофосфат (PPя) 6. PPя, мощным ингибитором формирования HA, гидролизуется по TNAP; NPP1 гидролизует нуклеотидов трифосфаты сформировать PP,я пока ANK экспортирует PP,я из ячейки в ECM. Pi/PPi соотношение может регулировать апатита формирования7,8 возможных патологических последствий9.
Мембрана MV обогащается в ионный транспорт белков, которые облегчают начальный осадков кальция и фосфатов внутри векторы во время процесса нуклеации (рис. 1). Фосфат транспортер 1 (Пит) помогает включить Pя сгенерирована perivesicular пространства в МВС10,11. Аннексины могут быть вовлечены в привязке и транспорта Ca2 + и в процессе биофизических, который инициирует минерализации в MV просвета12,13. Мы выступаем за гипотеза, предложил ранее, для минерализации в интрацитоплазматической пузырьков внутреннего нуклеации апатита внутри мВ до его распространения в ECM14,15. В vitro моделирования подтвердил индукции формирования Ca2 +/ pя комплексов в proteoliposomes из16Л.С. и AnxA5. Это может означать, что накопление Ca2 +, P,я, AnxA5 и ПС комплексов в липидной плоты микроворсинки как membranesrepresent нуклеации ядро (NC) апатита в пределах Мпротив Аннексины и TNAP обладают также коллаген привязки возможности, которые могут быть полезны в размещении MVs вдоль волокон коллагена и в стимулировании распространения минерализации в ECM. Fetuin A и Остеопоэтин (OPN)17, известны как ингибиторы формирования апатита, которая может замедлить распространение минерализации на коллагеновых эшафот. Зарождения и распространения являются различные события, бывший до последнего, и оба могут быть актуальными для процесса патологических минерализации.
Чтобы узнать, как химический состав кальция фосфат комплексов могут изменить физиологических минерализации и эктопической кальцификации, это необходимо для идентификации минералов, производимые клеток. Апатиты группа кальция и фосфатов, содержащие минералы с общего кристалл блок клеток формулой Ca10(PO4)6X2, где X = Cl, F, OH. Они классифицируются следующим образом18: fluorapatite (ФА) Ca6F10(PO4)2, хлорапатитом (CA) Ca10(PO4)6Cl2 и гидроксиапатита (HA) Ca10(PO4 )6(OH)2.
Выбор остеобластов клеточных линий, чтобы побудить минеральные образования имеет решающее значение, поскольку в каждой ячейке строки экспонатов собственный профиль минерализации. В настоящем докладе, мы сравнили нуклеации минералов на две отдельных клеток человека модели минерализации: osteoblastic hFOB 1.19 клетки и клетки остеосаркома Saos-2. Остеосаркома, полученных клетки обычно используются как osteoblastic модели и Saos-2 клетки сохранили наиболее зрелой osteoblastic характер19 пока недифференцированные человеческого плода hFOB клетки широко используются как модель для нормальной osteoblastic дифференциация20. Их минерализации профили были проанализированы различными методами: пятнать ализарин красный-S (AR-S), ультрафиолетового (УФ) света визуализации, передачи электронной микроскопии (ТЕА) изображений, энергии энергодисперсионный рентгеновский микроанализ (EDX) количественный и Ион сопоставление. Преимущество ТЕА-EDX над альтернативные методы, используемые в предыдущих исследованиях является, что она дает количественные и качественные результаты замены иона в апатита кристаллов4,5,21. Общая цель использования ТЕА-EDX состояла в том, чтобы найти простой способ для создания образов и количественной оценки распределения ионов Ca, F и Cl в различных минералов из различных типов клеток на различных этапах процесса минерализации. Этот метод успешно используется, например, для контроля взаимодействия цинка наночастиц с сосуществующих химических веществ и их совокупное воздействие на водные организмы22. В другом исследовании, медные фотокатализатор на титановые материалы в водном растворе широко характеризуется с помощью индуктивно связанной плазмы оптической эмиссионной спектрометрии (ICP-OES), N2 physisorption (BET), Дифракционные, UV-vis DRS, FT-IR, Раман спектроскопия, ТЕА-EDX и фотоэлектрохимические измерения23. Нашей целью было сравнить происхождение и свойства везикулы и минералов в двух клеточных линий, чтобы понять механизм, который управляет минерализации при костной дифференциации.
Рисунок 1 . Схема из первоначальных шагов минерализации в костных клеток, синтез белков внеклеточного матрикса (ECM) и выпуска Матричные везикулы (МВС) от мембраны. МВС накопления кальция через действия кальция связывания белков, Аннексины и фосфат, через действие неорганического фосфата транспортера (Пит) следуют активности тканей неспецифической щелочной фосфатазы (TNAP), который dephosphorylates PPя Pя, способствуя апатита зародышеобразования. Затем MVs распадаться и отпустите апатитов внеклеточных среды. Минерализация поддерживается постоянной поставке P,я и Ca2 + в внеклеточной средний4,5. Пожалуйста, нажмите здесь, чтобы посмотреть большую версию этой фигуры.
В текущем документе мы описали протоколы для окрашивания, УФ света идентификации fluorapatite AR-S и ТЕА-EDX в vitro изображений МВС, выпущенное минерализация клетки и минералов производимых MVs. Это позволяет решить все методы, упомянутые выше, после некоторых общих неполадок. Чтобы получ…
The authors have nothing to disclose.
МК и ASK ручной операции и LB подготовлены чертежи и сделал фильм. ASK написал рукопись, LB написал сценарий и MK подготовил таблицу. SM, RB и SP критически прочитать таблицу, сценарий и рукописи. Авторы хотели бы поблагодарить Hanna Chomontowska за ее превосходную помощь с ultramicrotomy а также Шимон Suski и Henryk Bilski за их прекрасную помощь с ТЕА-EDX анализа. Авторы хотели бы поблагодарить д-р Патрик рощи для коррекции профессионального английского языка и Барбара Sobiak для записи инструкции.
Эта работа была поддержана грант N N401 140639 от польского министерства науки и высшего образования спросить, за счет субсидий из национального научного центра, Польша 2016/23/N/NZ4/03313 фунтов и 2016/23/N/NZ1/02449 в МК, BIOIMAGINE Проект РП7 ЕС : Био-изображений в исследования инноваций и образования, GA № 264173 и уставных фондов из Ненцки Института экспериментальной биологии, польской академии наук.
Reagent | |||
Ham’s DMEM/F12 media mixture | PAA | E15-813 | 1:1, for human fetus hFOB 1.19 SV40 large T antigen transfected osteoblasts (ATCC CRL-11372) |
McCoy’s 5A medium | PAA | E82312-0025 | for human osteosarcoma Saos-2 cells (ATCC HTB-85) |
Antibiotics mixture (penicillin/streptomycin) | Sigma | P0781-100ML | 100 U/mL each |
G-418 | Sigma | 68168 | 0.3 mg/mL |
FBS | Gibco | 10270 | 10% for hFOB 1.19 and 15% for Saos-2 |
AA | Sigma | A-5960 | 50 µg/mL |
ß-GP | Sigma | G9422-100G | 7.5 mM |
Bio-Gel HTP Gel | Bio-Rad | 130-0420 | for HA |
FA | synthesized by us | ||
CA | synthesized by us | ||
Sodium phosphate buffer Na2HPO4/NaH2PO4 mixture | Sigma | S7907/S8282 | 0.1 M, pH 7.2 |
PBS | pH 7.0, prepared by us | ||
AR-S in PBS | Sigma | A5533-25G | 0.5 g/100 mL, pH 5.0 |
Collagenase type IA | Sigma | C2674 | 500 U/mL |
SCL buffer | prepared by us | ||
Deionized wather | produced by us | ||
Ethanol | POCh | BA6480111 | absolut 99.8% and solutions 25, 50, 75, 90% |
Uranyl acetate in 50% ethanol | Polysciences Inc. | 21447-25 | 0.25 g/10 mL |
PD medium | pH 7.4, prepared by us | ||
Fixation mixture (paraformaldehyde/glutaraldehyde) | Sigma | 158127/G-6257 | 3%:1% |
Post-fixation OsO4 | Sigma | 75633 | 1% |
LR White resin in ethanol | Polysciences Inc. | 17411-MUNC 500g | 1:2, 1:1, 100% |
Acetone | CHEMPUR | 111024800 | pure |
Tool | |||
Cryogenic vials | Corning Inc. | 430487 | 1.2 mL |
Plastic Petri culture dishes | Falcon | 353003 | 100 mm |
Plastic tubes | Falcon | 352096 and 352070 | 15 and 50 mL |
Serological pipettes | Falcon and VWR | 357521 and 612-3700 | 1 and 10 mL |
Plastic microcentrifuge tubes | Sigma | Z688312 and Z628034 | 1.5 mL black and 2 mL transparent |
Plastic tips | VWR | 613-0364, 613-0239 and 613-1050 | 0.1-10 µL natural, 1-200 µL yellow and 200-1000 µL blue |
Plastic racks | Light Labs | A-7055-Z, A-7053-C | green for tubes, orange for micro tubes and blue for TEM probes |
Laminar Hera Save | Thermo Scientific Co. | KS12 | HEPA filter (H14 according to DIN EN 1822) |
Incubators Hera Cell | Thermo Scientific Co. | 150 | 34°C for hFOB 1.19 and 37°C for Saos-2 |
Fume hood | POLON | WCS-2 | for TEM stainings |
Glass bottles | SIMAX | 1632414501050 and 1632414501100 | 50 and 100 mL |
Quartz glass tubes | SIMAX | 638422010100 | Ø 10 mm, L 100 mm |
Pump | IBS Integra Biosciences | VACUSAFE comfort | for vacuum |
Oven | Memmert | UNE 400 | 56°C |
Porcelain multi-well plate | Rosenthal technik | 229/12 | 12 wells |
Glass beakers | SIMAX | 632417010025 | 25 mL |
Glass bottles | Pocord | DIN22 | 10 mL |
Plastic box | Agar Scientific Ltd. | for darkness | |
Snap Fit Gelatin Capsules | Agar Scientific Ltd. | G3741 | size 1 |
Formvar/Carbon 300 Mesh Ni grids in box | Agar Scientific Ltd. | S162N3 | film on the shiny side |
Silicon cell scraper | Sigma | SIAL0010-100EA | size 1.8/25 cm |
Syringe with needle | BogMark | 007 | syringe 1 mL 40 U, needle 0.5 x 16 |
Syringe | Chirana | CH005L | 5 mL |
Centrifuge | MPW Medical Instruments | MPW-350R | 130 x g and 500 x g |
UV transluminator | UVP | M-20 | for visible and UV light |
Ultramicrotome | LKB | NOVA | 700Å sections |
Block holder | LKB | E6711 | round shape |
Diamond knife | DiATOME | Ultra 45° | size 3 |
Eyelash holder | bovine, prepared by us | ||
Forceps | ROTH | 2855.1 | antistatic for grids |
Spatulas set | ROTH | E286.1 | antistatic for powders |
Imaging | |||
Inverted Light Microscope | Zeiss with Canon | AxioObserver Z1 equipped with PowerShot G9 | Phase contrast, Transmitted light, 20 x objective, RGB filters |
Transmission Electron Microscope | TEM Jeol Co. with Oxford Instruments and SiS-Olympus | JEM-1400 TEM equipped with full range INCA Energy Dispersive X-ray microanalysis (EDX) System and 11 Megapixel MORADA G2 camera | magnification 50,000X for TEM and 15,000X for STEM and EDX |
Camera body and lenses | Nikon | Nikon D7100 Nikkor AF Micro 105 mm f/2.8D Nikkor AF-S 50 mm f/1.8G Nikkor AF 28 mm f/2.8D |
for movie recordings |
Microphone | MXL Mics | Tempo | for voice recordings |