Aminoalcoholes quirales son moléculas versátiles para el uso como andamios en síntesis orgánica. A partir de L-lisina, sintetizar alcoholes aminos por una reacción de cascada enzimática combinando diastereoselectiva H C oxidación catalizada por dioxygenase seguido por clivaje de la molécula de ácido carboxílico del aminoácido del hidróxido correspondiente por un decarboxilasa.
Amino alcoholes son compuestos versátiles con una amplia gama de aplicaciones. Por ejemplo, se han utilizado como andamios quirales en síntesis orgánica. Su síntesis de química orgánica convencional a menudo requiere procesos de síntesis de múltiples pasos tediosos, con difícil control sobre el resultado stereochemical. Presentamos un protocolo enzimáticamente sintetizar amino alcoholes a partir de la L-lisina disponible en 48 h. Este protocolo combina dos reacciones químicas que son muy difíciles de llevar a cabo por síntesis orgánica convencional. En la primera oxidación de paso, el regio – y diastereoselectiva de un enlace C-H sin activar de la lisina cadena lateral es catalizada por una dioxigenasa; una segundo regio – y diastereoselectiva de la oxidación catalizada por una dioxigenasa regiodivergent puede conducir a la formación de 1, 2-dioles. En el último paso, el grupo carboxílico del ácido alfa amino es dividido por un decarboxylase del fosfato de piridoxal (PLP) (DC). Este paso decarboxylative afecta sólo el carbono alfa del aminoácido, conservando el centro stereogenic hidroxi sustituido en posición beta y gamma. Los alcoholes aminos resultantes son ópticamente enriquecidos. El protocolo fue aplicado con éxito a la síntesis de semipreparative-escala de cuatro amino alcoholes. Seguimiento de las reacciones se realizó por cromatografía líquida de alta resolución (HPLC) después de la derivatización de 1-fluoro-2, 4-dinitrobenceno. Simple purificación por extracción en fase sólida (SPE) que brinda el amino alcoholes con excelentes rendimientos (93% a > 95%).
A pesar de los beneficios ofrecidos por Biocatálisis, la integración de biocatalizadores pasos de vías sintéticas o rutas biocatalíticas total sigue siendo en su mayoría limitada resolución cinética enzimática. Estas rutas han sido ampliamente utilizadas como un primer paso en la síntesis asimétrica de chemo-enzimática y Biocatálisis ofrece muchas más posibilidades de interconversions de grupo funcional con alta estereoselectividad1,2,3 . Por otra parte, como reacciones biocatalíticas se realizan en condiciones similares, por lo tanto es factible llevar a cabo reacciones de cascada en un pote de una manera4,5.
Aminoalcoholes quirales, son moléculas versátiles para el uso como auxiliares o andamios en síntesis orgánica6. La molécula de alcohol amino se encuentra con frecuencia en metabolitos secundarios y en ingredientes farmacéuticos activos (API). Β-amino alcoholes primarios están disponibles de los correspondientes ácidos α-amino por síntesis química convencional, sino acceso a γ-amino alcoholes quirales o alcoholes aminos secundarios requiere a menudo tediosas vías sintéticas junto con sensibles control de la estereoquímica7,8,9,10. Debido a su alta estereoselectividad, Biocatálisis pueden proporcionar una ruta sintética superior a estos bloques de construcción quirales11,12,13,14.
Previamente Reportamos la síntesis de mono – y di-hidroxi-L-lisinas por diastereoselectiva hidroxilación enzimática catalizada por dioxygenases de hierro (II) / α-ketoacid-dependiente de la familia de la ciclooxigenasa (αKAO) (figura 1)15. En particular, a partir de L-lisina, la KDO1 dioxigenasa cataliza la formación de los (3S) – hidroxi derivado (1), mientras que laR(4) – derivado (2) se forma por la reacción con KDO2 dioxigenasa. Hydroxylations regiodivergent sucesivos KDO1 y KDO2 conducen a la formación de los (3R4R) – dihidroxi – L-lisina (3) en forma ópticamente pura. Sin embargo, la gama limitada del sustrato de estas enzimas impide su gran utilización en la síntesis química, especialmente en la hidroxilación de aminas simples, como una molécula de ácido carboxílico en la α-posición del grupo amino es esencial para la actividad16.
Figura 1: conversiones biocatalíticas de L-lisina. Conversión en (3S) – hidroxi – L-lisina (1) catalizada por KDO1 dioxigenasa; (4R) – hidroxi – L-lisina (2) catalizada por dioxygenase KDO2; y 3R4R– dihidroxi – L-lisina (3) por la reacción en cascada sucesivamente catalizada por KDO1 y KDO2 dioxygenases. Haga clic aquí para ver una versión más grande de esta figura.
Descarboxilación es una reacción común en el metabolismo17. En particular, aminoácidos DCs (EC 4.1.1) libre de cofactor (pyruvoyl-dependiente) o enzimas dependientes de PLP y catalizar la descarboxilación de los aminoácidos en las poliaminas correspondientes en las bacterias y los más altos organismos18,19 , 20 , 21 , 22. el mono – y dihidroxi compuestos (figura 3) 4–7, 10–11 corresponden a cadaverina hidroxilado, la diamina obtenida por descarboxilación de la L-lisina. Cadaverina es un bloque de construcción clave para la industria química, específicamente es un componente de polímeros de poliuretano y poliamida. Por lo tanto, bio-basado en la producción de esta diamina de recursos renovables ha atraído la atención como alternativa a la ruta de base de petróleo y varios microorganismos han sido diseñados para este propósito. En estas rutas metabólicas, lisina DC (PMA) es la enzima clave. LDC es una enzima dependiente de PLP pertenecientes a la alanina evaluacion (AR) familia estructural23. El DCs de PLP-dependientes (PLP-DCs) son conocidos por ser altamente específicos de sustrato. Sin embargo, algunas enzimas poseen la capacidad de la promiscuidad leve, siendo activa a los aminoácidos L-ornitina y L-lisina, como por ejemplo el LDC de Selenomonas rumirantium (LDCSrum), que tiene constantes cinéticas similares para lisina y ornitina descarboxilación24,25. Este sustrato extendido especificidad hace que esta enzima un buen candidato para la descarboxilación de mono – y di-hidroxi-L-lisina. Además, para DCs activa hacia los derivados hidroxilos de la lisina, se examinó el contexto genomic de los genes que codifican las enzimas αKAO. De hecho, en genomas procariotas los genes que codifican las enzimas implicadas en la vía biosintética de la misma son generalmente co localizados en racimos del gene. El gene KDO2 (de Chitinophaga pinensis) fue encontrado Co localizada con un gen que codifica la supuesta PLP-DC (figura 2). En cambio, ninguna codificación del gene para DC se ha encontrado al analizar el contexto genómico de la KDO1 dioxigenasa. La proteína PLP-DC de C. pinensis (DCCpin) por lo tanto, fue seleccionada como un candidato prometedor para catalizar el paso de la descarboxilación de la reacción en cascada.
Figura 2: contexto Genomic del gene KDO2 en C. pinensis. Haga clic aquí para ver una versión más grande de esta figura.
Por lo tanto, hemos diseñado las reacciones de la cascada enzimática que dioxygenases y DCs para lograr la síntesis de alcoholes alifáticos quirales β – y γ-amino de los aminoácidos (figura 3). Como se informó anteriormente, la oxidación de H de C catalizada por la αKAO presenta el centro stereogenic hidroxi sustituidas con diastereoselectividad total; la quiralidad Cβ/γ se conservarán en el paso decarboxylative, que sólo afecta el carbono Cα de la molécula del aminoácido del16.
Figura 3: Análisis retrosintético. Retrosynthesis (A) de β – y γ-amino alcoholes (R) – 1, 5 – diaminopentan-2-ol (4) (5R) – hidroxi – L-lisina y (S) – 1, 5 – diaminopentan-2-ol (5) y 1, 5-diaminopentan-3-ol (6) de L-lisina. Retrosynthesis (B) β, γ y β, δ-aminoácidos dioles (2S, 3S) – 1, 5 – diaminopentane-2, 3-diol (10) y (2R, 4S) – 1,5 – diaminopentane-2, 4-diol (11) a partir de (5R)- hidroxi-L-lisina y (2R, 3R) – 1,5 – diaminopentane-2, 3-diol (7) a partir de L-lisina. Haga clic aquí para ver una versión más grande de esta figura.
A partir de L-lisina y su (5R)-hidroxi derivado, Adjunto divulgamos una dos o tres paso, un pote, procedimiento enzimático combina dioxygenases y PLP-DCs para obtener el objetivo de amino alcoholes. Antes de la síntesis a escala de laboratorio de las moléculas de la blanco, el método fue desarrollado en la balanza analítica para ajustar las condiciones de reacción, por ejemplo, las concentraciones de enzima, necesarias para permitir la conversión total de las materias primas; Presentamos este procedimiento así.
Derivados y aminoalcoholes quirales tienen una amplia gama de aplicaciones, desde auxiliares quirales para la síntesis orgánica a la terapia farmacéutica. Síntesis multietapa para producir alcoholes aminos por síntesis orgánica convencional son numerosos, pero no siempre es eficiente debido a medidas de protección/desprotección tedioso junto con un control sensible de la estereoquímica16. Un enfoque de biocatalizadores que prescinde de las medidas de protección/desprotección y es genera…
The authors have nothing to disclose.
Los autores agradecen Véronique de Berardinis de debate fructífero y Alain Perret, Christine Pellé y Peggy Sirvain para soporte técnico.
HEPES | Sigma Aldrich | H3375 | |
L-lysine hydrochloride | Sigma Aldrich | L5626 | |
(5S)-hydroxy-L-lysine | Sigma Aldrich | GPS NONH | Out sourcing |
α-ketoglutaric acid | Sigma Aldrich | 75892 | |
Sodium ascorbate | Sigma Aldrich | A7631 | |
Ammonium Iron(II) sulfate hexahydrate | Acros | 201370250 | |
Pyridoxal phosphate (PLP) | Sigma Aldrich | 82870 | |
3,4-dimercaptobutane-1,2-diol (DTT) | Sigma Aldrich | D0632 | |
1-fluoro-2,4-dinitrobenzene (DNFB) | Sigma Aldrich | D1529 | |
Ethanol | VWR | 20825.290 | |
Sodium hydrogen carbonate | Sigma Aldrich | 71631 | |
HCl 37% | Sigma Aldrich | 435570 | |
HCl 0.1M | Fluka | 35335 | |
Acetonitrile HiPerSolv CHROMANORM for LC-MS | VWR | 83640.320 | |
2,2,2-trifluoroacetic acid | VWR | 153112E | |
Ammonia 28% | VWR | 21182.294 | |
Methanol HiPerSolv CHROMANORM for LC-MS | VWR | 83638.32 | |
Formic acid | Acros | 270480010 | |
Phosphoric acid 85% | Acros | 201145000 | |
Deuterium oxide | Acros | 320,710,075 | |
NaOH | Sigma Aldrich | S5881 | |
C18 HPLC column | Phenomenex | 00F-4601-Y0 | |
Accela UHPLC System | ThermoFisher Scientific | ||
Accela PDA detector | ThermoFisher Scientific | ||
4mm syringe filters – 0,22µm – PVDF | Merck | SLGVR04NL | |
Single-use tuberculin syringe with ml graduation, Luer tip | VWR | HSWA5010.200V0 | |
Cation exchange resin 100-200 mesh | Sigma Aldrich | 217506 | |
Mixed mode cation-exchange solid-phase extraction cartridge 6 mL | Waters | 186000776 | |
Extraction manifold | Waters | WAT200609 | |
Rotary evaporator | Büchi | 531-0103 | |
Lyophilizer alpha 1-2 LDplus | Christ | L083302 | |
Micropipette 20 µL | Eppendorf | 3121000031 | |
Micropipette 100 µL | Eppendorf | 3121000074 | |
Micropipette 500 µL | Eppendorf | 3121000112 | |
Micropipette 1000 µL | Eppendorf | 3121000120 | |
300 MHz spectrometer | Bruker | ||
2 mL microtube | CLEARLine | CL20.002.0500 | |
50 mL conical-bottom centrifuge tube | Fischer Scientific | 05-539-8 | |
25 mL round-bottom flask 14/23 | Fischer Scientific | 10353331 | |
100 mL round-bottom flask 29/32 | Fischer Scientific | 11786183 | |
250 mL round-bottom flask 29/32 | Fischer Scientific | 11786183 | |
250 mL erlenmeyer flask | Fischerbrand | 15496143 |