Un protocole amélioré est présenté pour la mesure de l’expression transitoire de constructions de journaliste dans les cellules d’aleurone orge après le bombardement par des particules. La combinaison d’automatisé grain de meulage avec essais enzymatiques plaque 96 puits offre un débit élevé pour la procédure.
La couche d’aleurone de grains d’orge est un important système modèle pour l’expression génique réglé par hormone chez les plantes. Dans les cellules d’aleurone, gènes requis pour la germination ou du développement de la plantule sont activés par la gibbérelline (GA), tandis que les gènes associés à des réactions de stress sont activés par l’acide abscissique (ABA). Les mécanismes de signalisation de GA et ABA peuvent être interrogés en introduisant des constructions de gène de journaliste dans les cellules d’aleurone par bombardement par des particules, avec l’expression transitoire résultante mesurée à l’aide d’essais enzymatiques. Un protocole amélioré est rapporté que partiellement automatise et simplifie l’étape d’homogénéisation de grain et les dosages enzymatiques, ce qui permet un débit nettement plus que les méthodes existantes. Homogénéisation des échantillons de grain se faite avec un homogénéisateur tissus automatisés, et GUS (β-glucuronidase) essais sont effectués à l’aide d’un système de plaque à 96 puits. Les résultats représentatifs en utilisant le protocole suggèrent que l’activité phospholipase D jouerait un rôle important dans l’activation de l’expression de gène HVA1 par l’ABA, par le facteur de transcription TaABF1.
La couche d’aleurone de l’orge est un système de modèle bien établi pour l’étude de l’expression génique réglé par hormone en plantes1. En particulier, un certain nombre de gènes nécessaires à la germination ou du développement de la plantule est activé par la gibbérelline (GA), tandis que les gènes associés à des réactions de stress sont activés par l’acide abscissique (ABA). Le GA et ABA, voies de signalisation sont entrelacées, comme l’expression de certains gènes activés par le GA est inhibée par l’ABA et vice versa1.
Une stratégie utile pour comprendre que le rôle des acteurs particuliers dans la signalisation de GA/ABA a été l’introduction d’effecteur gènes chimères par bombardement par des particules, suivi d’une expression transitoire de constructions de journaliste qui permettent l’effet qui en résulte sur expression des gènes en aval à déterminer. L’utilisation de gènes rapporteurs comme GUS (β-glucuronidase) ou de la luciférase permet la mesure sensible et quantitative de l’expression des gènes spécifiquement dans les cellules qui ont reçu la construction de l’effecteur. Par exemple, l’introduction d’une construction d’effecteur codant le facteur de transcription TaABF15,6 établi que gènes induite par l’ABA comme HVA1 sont induits par la TaABF1, tout en GA-induite des gènes tels que Amy32b sont réprimés. Bombardement de particules comme une stratégie expérimentale a été utilisé par plusieurs laboratoires pour étudier divers aspects de la GA/ABA de signalisation. Ce travail a conduit à l’identification des éléments du promoteur importants pour l’activation de gènes induite par l’ABA3et induite par le GA2 et à la découverte des protéines kinases4 et facteurs de transcription5 qui régulent la expression de ces gènes.
L’existant protocoles2,3,4,5,6 pour le bombardement par des particules et mesure subséquente d’expression transitoire sont travail très intensif, comme chaque ensemble de bombardé à peine les grains soit homogène à la main dans un mortier et un pilon et les dosages enzymatiques sont effectués individuellement. Ce manuscrit rapporte un protocole amélioré que partiellement automatise et simplifie l’étape d’homogénéisation et le GUS dosages pour permettre un débit nettement plus, permettant un plus grand nombre de traitements pour être testés dans la même expérience, ou la inclusion de plusieurs répétitions pour chaque traitement afin d’obtenir davantage de résultats statistiquement robuste. Résultats représentatifs sont indiqués pour l’expression de constructions journaliste HVA1 et Amy32b , régie par le facteur de transcription TaABF1, ainsi que par les GA, ABA et autres molécules régulatrices.
L’introduction du gène de l’effecteur construit par bombardement par des particules, suivie d’une expression transitoire de constructions de journaliste est une stratégie utile pour disséquer le rôle des acteurs particuliers dans la signalisation de GA/ABA et du gène réglementés hormone qui en résulte expression.
Cependant, les protocoles existants pour mener à bien de telles expériences dans l’orge aleurone cellules2,3,<sup class=…
The authors have nothing to disclose.
Les auteurs remercient Greyson Butler et Margaret Barrett pour les aider à réaliser les expériences, Judy Stone pour obtenir des conseils sur l’homogénéisation de grain et Lynn Hannum pour obtenir des conseils sur la fluorométrie. Ce travail a été soutenu par la National Science Foundation (IOB 0443676), par une sentence de développement institutionnel (IDeA) de la National Institute of General Medical Sciences, de la National Institutes of Health, sous le numéro de licence P20GM0103423 et par des subventions de la Division de Colby College des Sciences naturelles.
GeneElute HP plasmid Maxiprep kit | Sigma | NA0310-1KT | |
UV-vis spectrophotometer | Nanodrop | ND-1000 | |
Himalaya barley grains | / | / | A variety of hulless barley (store in the dark at 4° C) |
sodium succinate | Sigma | S2378 | Reagent for Imbibing Solution |
calcium chloride (dihydrate) | Fisher | C79-500 | Reagent for Imbibing Solution |
Imbibing Solution | home made | / | 20 mM sodium succinate, 20 mM calcium chloride, pH 5.0. Sterilize by autoclaving before use. |
chloramphenicol | Sigma | C0378 | Prepare a 10 mg/mL stock solution in 70% ethanol. |
vermiculite | Fisher | NC0430369 | Used for vermiculite plates. |
filter paper circles (90 mm) | Whatman | 1001 090 | Used for vermiculite and for pre-bombardment grain preparation |
Vermiculite Plates | home made | / | Add 50 mL of vermiculite to a glass petri dish. Place a 90 mm paper circle on top of the vermiculite. Autoclave. |
forceps (fine pointed) | Fisher | 13-812-42 | Used for removing seed coat from barley grains. |
forceps (ultra fine point) | Fisher | 12-000-122 | Used for removing seed coat from barley grains. |
gold microcarriers (1.6 μm) | BioRad | 1652264 | |
macrocarriers | BioRad | 1652335 | |
calcium chloride (dihydrate) | Fisher | C79-500 | Prepare a 2.5 M stock solution and store 1 mL aliquots at -20° C. |
spermidine | Sigma | S0266 | Prepare a 100 mM stock solution and store 500 μL aliquots at -20° C (use within 2 months). |
rupture discs (1550 psi) | BioRad | 1652331 | |
stopping screens | BioRad | 1652336 | |
macrocarrier holders | BioRad | 1652322 | |
Biolistic particle delivery system | BioRad | PDS-1000/He | |
sodium phosphate monobasic monohydrate | Sigma | S9638 | Reagent for 1M sodium phosphate pH 7.2 |
sodium phosphate dibasic | Sigma | S9763 | Reagent for 1M sodium phosphate pH 7.2 |
1M sodium phosphate pH 7.2 | home made | / | Combine 6.9 g of sodium phosphate monobasic monohydrate with 7.1 g of sodium phosphate dibasic. Add water to 100 mL. Add NaOH to get pH 7.2. |
dithiothrietol (DTT) | Sigma | 43819 | Dissolve in water to 1 M. Store at -20° in 1 mL aliquots. |
leupeptin | Sigma | L2884 | Dissolve in water to 10 mg/mL. Store at -20° C. |
glycerol | Sigma | G5516 | Prepare a 50% solution in water. |
Grinding Buffer | home made | / | Combine 10 mL of 1 M sodium phosphate pH 7.2, 500 μL of 1 M DTT, 100 μL of 10 mg/mL leupeptin, and 40 mL of 50% glycerol. Add water to 100 mL. |
stainlesss steel beads (5 mm) | Qiagen | 69989 | |
2.0 mL tubes | Eppendorf | 22363352 | This specific model of tube is recommended for use with the homogenizer. |
bead homogenizer (TissueLyser) | Qiagen | 85210 | |
12mm x 75 mm glass test tubes | Fisher | ||
luciferin | Goldbio | LUCK-100 | Prepare a 25 mM stock solution and store 1 mL aliquots at -20° C. |
ATP | Sigma | A7699 | Prepare a 100 mM stock solution and store 250 μL aliquots at -20° C. |
Tris base | Sigma | T1503 | Reagent for 1M Tris sulfate pH 7.7. |
sulfuric acid | Sigma | 258105 | Reagent for 1M Tris sulfate pH 7.7. |
1M Tris sulfate pH 7.7 | home made | / | Dissolve 12.1 g Tris base in 100 mL of water. Adjust pH to 7.7 with sulfuric acid. |
magnesium chloride | Sigma | M9397 | Dissolve in water to 2 M. |
Luciferase Assay Buffer (LAB) | home made | / | Combine 3 mL of 1 M Tris sulfate pH 7.7, 500 μL of 2 M magnesium chloride, 1 mL of 1 M DTT, and 200 μL of 0.5 M EDTA. Add water to 50 mL. |
Luciferase Assay Mixture | home made | / | Combine 15 mL of LAB, 800 μL of 25 mM luciferin, 200 μL of 100 mM ATP, and 4 mL of water. This makes enough assay mixture (20 mL) for 100 luciferase assays. |
luminometer (Sirius) | Berthold | / | |
4-methylumbelliferyl-β-D-glucuronide (MUG) | Goldbio | MUG1 | Dissolve in DMSO to 100 mM. |
sodium azide | Sigma | S8032 | Prepare a 2% stock solution in water and store 1 mL aliquots at -20° C. |
96 well plates (standard) | Fisher | 12565501 | |
GUS assay buffer | home made | / | Combine 2.5 mL of MUG, 5 mL of 1 M sodium phosphate pH 7.2, 400 μL of 0.5 M EDTA, 1 mL of 1 M DTT, 100 μL of 10 mg/ml leupeptin, 20 mL of methanol, and 1 mL of 2% sodium azide. Add water to 100 mL. |
TempPlate sealing film | USA Scientific | 2921-1000 | |
96 well plates (black) | Costar | 3916 | |
sodium carbonate | Sigma | S7795 | Prepare a 200 mM solution in water. |
4-methylumbelliferone | Sigma | M1381 | Prepare a 100 μM solution in water. Freeze 1 mL aliquots at -20° C. |
microplate fluouresence reader | Bio-Tek | FLX-800 |