Recombinant prototype foamy virus integrase protein is often contaminated with a bacterial nuclease during purification. This method identifies nuclease contamination and removes it from the final preparation of the enzyme.
The integrase (IN) protein of the retrovirus prototype foamy virus (PFV) is a model enzyme for studying the mechanism of retroviral integration. Compared to IN from other retroviruses, PFV IN is more soluble and more amenable to experimental manipulation. Additionally, it is sensitive to clinically relevant human immunodeficiency virus (HIV-1) IN inhibitors, suggesting that the catalytic mechanism of PFV IN is similar to that of HIV-1 IN. IN catalyzes the covalent joining of viral complementary DNA (cDNA) to target DNA in a process called strand transfer. This strand transfer reaction introduces nicks to the target DNA. Analysis of integration reaction products can be confounded by the presence of nucleases that similarly nick DNA. A bacterial nuclease has been shown to co-purify with recombinant PFV IN expressed in Escherichia coli (E. coli). Here we describe a method to isolate PFV IN from the contaminating nuclease by heparin affinity chromatography. Fractions are easily screened for nuclease contamination with a supercoiled plasmid and agarose gel electrophoresis. PFV IN and the contaminating nuclease display alternative affinities for heparin sepharose allowing a nuclease-free preparation of recombinant PFV IN suitable for bulk biochemical or single molecule analysis of integration.
Biochemical and single molecule studies of protein interactions with DNA require exceptionally pure recombinant proteins. Contaminating nucleases from bacteria can obscure the results of these assays. A contaminating nuclease has been found in preparations of recombinant proteins oxygen scavenger protocatechuate-3,4-dioxygenase (PCD) and prototype foamy virus (PFV) integrase (IN) isolated from Escherichia coli (E. coli)1,2,3.
Retroviral integration assays rely on the conversion of supercoiled DNA to nicked or linear products as a measure of IN activity4. During cellular infection IN joins the two ends of a viral cDNA to the host chromatin5. Each end joining reaction is termed strand transfer. Assays of recombinant IN activity may join two DNA oligomers mimicking the viral cDNA ends to a target DNA in a concerted integration reaction4,5,6,7,8. Alternatively recombinant IN may join only one DNA end in a non-physiologically relevant half site integration reaction9,10. When supercoiled plasmid DNA is the target of integration, concerted integration products are linearized DNA and half site integration products are relaxed circles. These reaction products are identified by their relative mobility during agarose gel electrophoresis1. If the recombinant IN has a contaminating nuclease, there will be spurious relaxed circles or a possibly linearized plasmid confusing the experimental results. Viral DNA oligomers may be fluorescently labeled to conclusively identify integration products, as opposed to nuclease products. However, IN greatly favors supercoiled DNA targets; any loss of supercoiled plasmid to relaxed circles or linear DNA by contaminating nuclease could skew results and interpretation of data11. Thus it is imperative to remove bacterial nucleases from retroviral IN preparations.
PFV IN has a different affinity for heparin sepharose compared to the bacterial nuclease1. PFV IN and the nuclease may be separated by a linear gradient elution from heparin sepharose. The nuclease is not readily detected by an ultraviolet (UV) absorbance at 280 nm peak or by analytical sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Instead, the nuclease is detected by a nuclease activity assay employing the conversion of a supercoiled plasmid to relaxed circles or linear products. Each fraction following heparin sepharose chromatography is tested for nuclease activity. PFV IN and the nuclease contaminant have no difference in affinity for Mono-Q anion resin. There is a small difference in affinity for Mono-S cation resin. However, the Mono-S resolution of bacterial nuclease and PFV IN would not allow efficient separation of the proteins. Ultimately, heparin sepharose affinity purification offers the best separation of bacterial nuclease from PFV IN and has the advantage of unlimited load volume.
Testing for contaminating nuclease activity may be adapted to other proteins. The protein of interest will likely have alternative affinity characteristics than PFV IN; the difference in binding characteristics of the protein of interest and the nuclease contaminant must be empirically determined. This methodology for identifying nuclease contamination may be adapted to other resins including Mono-S cation or Mono-Q anion exchange resins. Affinity and ion exchange resins may offer a reliable method to isolate a recombinant protein of interest from contaminating nucleases with no limits on the volume of protein during chromatography.
1. Induce PFV IN Expression in E. coli
2. Nickel Affinity Chromatography
3. Heparin affinity chromatography
4. Nuclease assay
Recombinant PFV IN is often contaminated with a bacterial nuclease1. Biochemical integration assays depend on the quantitation of the conversion of supercoiled plasmid DNA to relaxed circles and linear products. The presence of a contaminating nuclease could lead to spurious quantitation of these assays. Expression of PFV IN with a hexahistidine tag is induced in E. coli (Figure 1) and first purified by nickel affinity chromatography (Figure 2). The fractions with nearly pure PFV IN are combined and the hexahistidine tag is cleaved by a protease. We have determined that PFV IN and the contaminating nuclease have different affinities for heparin sepharose chromatography (Figure 3)1. PFV IN fractions following heparin sepharose chromatography are incubated with a supercoiled plasmid to assay for relaxed circles and linearized plasmid, the products of nuclease activity (Figure 4). This assay allows the identification of protein fractions without the nuclease (Figure 5). These fractions may be combined, dialyzed, and frozen for future experiments.
Figure 1: Induction of PFV IN in E. coli . Cells from cultures before (lane 2) and after (lane 3) induction are analyzed for the presence of PFV IN, 47374 Da. Samples were separated by 10% SDS-PAGE and stained with Coomassie brilliant blue. Lane 1, molecular weight markers (kDa). Please click here to view a larger version of this figure.
Figure 2: Nickel affinity chromatography fractions. Soluble bacterial lysates were separated by nickel affinity chromatography. PFV IN with a hexahistidine tag was eluted with a linear gradient of 20 mM to 200 mM imidazole. Fractions were evaluated by 10% SDS-PAGE and stained with Coomassie brilliant blue. PFV IN, 47374 Da, is readily apparent in the sample loaded to the column (load), but is less apparent in the flow through or wash. Fractions that elute early in the imidazole gradient commonly display a slower mobility contaminant near 75 kDa as well as some faster mobility contaminants at or below 25 kDa. At higher concentrations of imidazole there are no readily apparent contaminants and PFV IN appears to be relatively pure. In this example, fractions #33 through #84 were combined and further purified. Molecular weight markers (kDa) are on the left of each gel. Please click here to view a larger version of this figure.
Figure 3: Heparin sepharose chromatography of PFV IN 1 . Following nickel affinity and protease removal of the hexahistidine tag, PFV IN (44394 Da) was fractionated by heparin sepharose. Proteins were eluted with a linear gradient from 200 mM to 1 M NaCl. Even fractions #12 to #44 were evaluated by 8% SDS-PAGE stained with Coomassie blue. Molecular weight markers (kDa) are on the left of each gel. These fractions were tested for nuclease activity. Please click here to view a larger version of this figure.
Figure 4: Nuclease assay of heparin sepharose fractions1 . Each heparin sepharose fraction was added to supercoiled plasmid DNA. Fraction numbers correlate to those shown in Figure 3. Following incubation, the nuclease reactions were deproteinated and separated by 1% agarose with ethidium bromide. Negative controls include plasmid DNA with no protein (Target Only) and a previous purification of wild type PFV IN known to be free of nuclease (PFV IN WT). A positive control for contaminating nuclease activity is a previous purification of catalytically inactive PFV IN that is known to have contaminating nuclease (PFV IN D128N). DNA size markers are shown in kb. Supercoiled plasmid (SC), linear plasmid (L), and relaxed circles (RC) are indicated. Please click here to view a larger version of this figure.
Figure 5: Quantitation of nuclease assays1. Agarose gels were scanned and pixel values were quantified for supercoiled (SC), linear (L), and relaxed circle (RC) bands in each lane. Fraction numbers correlate to those shown in Figures 3 and 4. The percentages of linear and relaxed circles were calculated using the pixel values and the equation shown. For example, the pixel values for the bands of fraction #12 are: 817636 supercoiled plasmid, 50467 linear plasmid, and 112052 relaxed circles. The total DNA pixel value for fraction #12 is the sum of these values, 980155. The percentage of linear DNA is 50467 multiplied by 100 for the percentage and divided by the total DNA value equaling 5.1%. The percentage of relaxed circles is 112052 multiplied by 100 and divided by the total DNA value equaling 11.4%. The sum of linear and relaxed circle percentages is 16.5%. Negative control plasmid DNA with no protein (No IN, bottom graph) indicates that this preparation of plasmid included 4.4% of the total DNA as linear or relaxed circles. A second negative control was a previous purification of wild type PFV IN (WT) that displayed 8.6% of the total DNA as linear or relaxed circles. These two control lanes indicate the background level of nicked or linearized plasmid present with the substrate alone and with PFV IN. A positive control is a previous purification of catalytically inactive PFV IN (D128N) which had 23% of the total DNA as linear and relaxed circles. The DNA exposed to heparin sepharose fractions #12 through #22 resulted in >10% of the DNA as linear and relaxed circles. In this example, fractions #24 to #42 displayed <10% conversion to linear and relaxed circles. These fractions were combined and dialyzed. Aliquots were frozen and stored at -80 °C for future use. Please click here to view a larger version of this figure.
Recombinant proteins that interact with DNA, such as DNA repair proteins, oxygen scavengers for single molecule microscopy applications, or retroviral integrases, should be free of contaminating bacterial nucleases2,3. These contaminants may confuse the interpretation of results during bulk biochemical or single molecule assays.
We have found that a bacterial nuclease frequently co-purifies with PFV IN. However, PFV IN displays an affinity for heparin sepharose that is readily distinguishable from the bacterial nuclease contaminant1. The key to preparation of nuclease-free PFV IN is the careful quantitation of nuclease activity in each fraction following gradient elution from heparin sepharose. The gradient must be sufficiently shallow to allow the separation of PFV IN from the nuclease contaminant; a steep gradient would not be compatible with efficient separation. In addition, the plasmid DNA substrate should have a low percentage of relaxed circles to reduce the background of the nuclease assay. If the plasmid DNA substrate has a high background of relaxed circles, a new purification of plasmid DNA should be performed. The nuclease activity assay reveals the presence of the contaminating nuclease and fractions that should be discarded.
In some cases, size exclusion chromatography (SEC) may be an effective method for removal of a contaminating nuclease2. Previous groups have used SEC during purification of PFV IN4. SEC has a limited load volume and tends to reduce the final protein concentration. The major advantage to affinity and ion exchange chromatography is the ability to load a significantly greater volume than SEC.
Testing for nuclease activity may be adapted to different proteins that co-purify with a bacterial nuclease. Here we identify that PFV IN and a contaminating nuclease may be separated by heparin sepharose chromatography. We have previously shown that PFV IN has a similar profile to the nuclease with Mono-S cation and Mono-Q anion exchange chromatography making these resins unsuitable for this protein. Depending on the affinity characteristics of the desired protein in relation to the nuclease, this protocol may be used with affinity or ion exchange resins and gradient elution. The key to effective removal of nuclease contamination from a protein of interest is a difference in affinity for a resin. Each fraction must be assayed for nuclease activity. The chromatography resins of this protocol may not be directly applied to all proteins that co-purify with bacterial nucleases. However, the overall concept of using an affinity or ion exchange resin to separate the nuclease from a protein of interest and assaying fractions for nuclease activity may be broadly applicable.
The authors have nothing to disclose.
This work was supported by NIH AI099854 and AI126742 to KEY.
BL21/DE3 Rosetta E. coli | EMD Millipore | 70956-4 | |
LB broth | EMD biosciences | 1.10285.0500 | |
Ampicillin | Amresco | 0339 | |
Chloramphenicol | Amresco | 0230 | |
PBS | Sigma-Aldrich | D8537 | |
IPTG | Denville Scientific | CI8280 | |
ZnCl2 | Sigma-Aldrich | 208086 | |
Tris Ultra Pure | Gojira Fine Chemicals | UTS1003 | |
NaCl | P212121 | RP-S23020 | |
PMSF | Amresco | 0754 | |
Imidazole | Sigma-Aldrich | I0250 | |
DTT | P212121 | SV-DTT | |
UltraPure EDTA | Invitrogen/Gibco | 15575 | |
MgSO4 | Amresco | 0662 | |
Agarose | Denville Scientific | CA3510 | |
Ethidium bromide | Thermo Fisher Scientific | BP1302 | |
Glycerol | Fisher Scientific | G37-20 | |
Ni-NTA Superflow | Qiagen | 30430 | |
Heparin Sepharose 6 Fast Flow | GE Healthcare Life Sciences | 17-0998-01 | |
HRV14 3C protease | EMD Chemicals | 71493-3 |