This protocol describes a method of chemical kindling with pentylenetetrazole and provides a mouse model of epilepsy. This protocol can also be used to investigate vulnerability to seizure induction and pathogenesis after epileptic seizures in mice.
Pentylenetetrazole (PTZ) is a GABA-A receptor antagonist. An intraperitoneal injection of PTZ into an animal induces an acute, severe seizure at a high dose, whereas sequential injections of a subconvulsive dose have been used for the development of chemical kindling, an epilepsy model. A single low-dose injection of PTZ induces a mild seizure without convulsion. However, repetitive low-dose injections of PTZ decrease the threshold to evoke a convulsive seizure. Finally, continuous low-dose administration of PTZ induces a severe tonic-clonic seizure. This method is simple and widely applicable to investigate the pathophysiology of epilepsy, which is defined as a chronic disease that involves repetitive seizures. This chemical kindling protocol causes repetitive seizures in animals. With this method, vulnerability to PTZ-mediated seizures or the degree of aggravation of epileptic seizures was estimated. These advantages have led to the use of this method for screening anti-epileptic drugs and epilepsy-related genes. In addition, this method has been used to investigate neuronal damage after epileptic seizures because the histological changes observed in the brains of epileptic patients also appear in the brains of chemical-kindled animals. Thus, this protocol is useful for conveniently producing animal models of epilepsy.
Epilepsy is a chronic neurological disorder that is characterized by recurrent seizures and affects approximately 1% of people. The underlying mechanisms of epileptogenesis and seizure generation in epilepsy patients cannot be fully clarified in clinical studies. Therefore, an appropriate animal model is required for the study of epilepsy1.
A variety of animal models of epilepsy have been used to investigate the physiology of epilepsy and to identify anti-epileptic drugs2,3. Among these models, pharmacological seizure induction is a common method used to generate an animal model for the investigation of the pathology of epilepsy4. This method is inexpensive and simple. Electrode-mediated kindling is also a commonly used method, but the costs of this procedure are higher, and the method requires surgical and electrical skills to induce repetitive seizures5.
Pharmacological induction is also advantageous because the timing and number of seizures are easily controlled. Genetic mouse models that exhibit spontaneous seizures are also used in the study of epilepsy. However, predicting when and how often the seizures arise in these genetic models may be impossible6. A monitoring system is required to observe the epileptic behavior of genetically modified mice6.
Kainic acid, pilocarpine and pentylenetetrazole (PTZ) are widely used as seizure-inducing drugs7. Kainic acid is an agonist for glutamate receptors, and pilocarpine activates cholinergic receptors. PTZ is a gamma aminobutyric acid (GABA)-A receptor antagonist8. PTZ suppresses the function of inhibitory synapses, leading to increased neuronal activity. This regulation causes generalized seizures in animals9. A single injection of kainic acid and pilocarpine can induce acute seizures, especially status epilepticus (SE)10,11 and kainic acid- or pilocarpine-mediated SE promotes chronic spontaneous and recurrent seizures12,13. Electroencephalographic (EEG) recordings and behavior analysis have indicated that spontaneous recurrent seizures are observed a month after a single injection12,13. A single injection of a convulsive dose of PTZ also induces acute seizure. However, chronic spontaneous seizures after a single injection of PTZ are difficult to promote. Chronic administration of PTZ is required to induce repetitive seizures14. In either method, the generation of repetitive seizures is able to induce a pathology more similar to that of human epilepsy than the generation of acute seizures. In the case of PTZ, each injection evokes a seizure, and seizure severity becomes more severe in a stepwise manner with each injection. Finally, a single low-dose PTZ injection induces a severe tonic-clonic seizure. In this phase, each injection evokes severe seizures. In addition, the seizure latency and duration also change over the course of the injections. The latency to tonic seizure often becomes shorter in the latter phase of kindling15. Furthermore, seizure aggravation is accompanied by a prolonged seizure duration16. Investigating the molecular mechanism regulating the seizure severity, latency, and duration is useful for screening anti-epileptic drugs17,18,19.
Seizures are commonly induced by a single systemic administration of PTZ, and the recovery is very fast, within 30 min4,5. Thus, the number of seizures is more controllable in the PTZ-kindling model. However, EEG monitoring has indicated that generalized spikes may be seen up to 12 h after PTZ-mediated seizure20. Therefore, animals should preferably remain under observation for 24 h after the myoclonic or tonic seizure21 for more precise analysis of the kindling mechanisms.
The administration of anti-epileptic drugs, such as ethosuximide, valproate, phenobarbital, vigabatrin, and retigabine3, before or after PTZ injection mitigates the aggravation of the seizure severity3,22,23. Similarly, knockout mice that lack genes involved in seizure exacerbation, such as matrix metalloproteinase-924, FGF-2225 and neuritin26, have been shown to exhibit reduced seizure severity after multiple PTZ injections. In addition, observing histopathological alterations after epileptic seizures is possible with this method. In patients with temporal lobe epilepsy, there are typical histological changes in the brain, such as mossy fiber sprouting27,28, abnormal granule neuron migration29, astrogliosis30, neuronal cell death in the hippocampus31,32, and hippocampal sclerosis33. Similar changes are observed in epileptic model animals. Among the available methods, PTZ-mediated chemical kindling is a good, reproducible and inexpensive method to produce an animal model of epilepsy. In a pilocarpine-mediated SE model, seizure control is difficult and many mice die or fail to develop SE34. In contrast, mortality and seizure severity are more controllable in the PTZ model. Additionally, PTZ is less expensive than kainic acid, and skills in mouse brain surgery are not required for drug administration.
All experimental procedures were approved by the Animal Care and Use Committee of the Tokyo Metropolitan Institute of Medical Science. Postnatal 8 – 16-week-old mice are recommended. Any inbred strain is acceptable for the experiment. C57BL/6 mice are more resistant to PTZ, whereas BALB/c and Swiss albino mice are more sensitive to PTZ. C57BL/6 were used in this study. Vulnerability to PTZ also depends on the age of the mouse. Compared to younger mice, older mice are more refractory to PTZ35. The number of animals used for this method can vary, but at least 6 – 10 animals are required for each condition.
1. Preparation of PTZ
2. Injection of PTZ
3. Seizure Score
4. Post-Seizure Analysis
Repetitive injection of PTZ induces an increase in seizure severity. Six C57BL/6 mice were treated with PTZ, and another 6 mice were treated with saline as a control group. The PTZ dose was 35 mg/kg, and 10 injections were administered. The seizure score gradually increased with PTZ injections, whereas no seizures or abnormal behaviors were evoked by saline injections (Figure 2). ANOVA followed by Bonferroni test showed a significant difference between the PTZ-treated group and the saline-treated group.
Repetitive seizure promotes aberrant axonal branch formation (mossy fiber sprouting) and abnormal migration of granule cells in the hippocampus. Mice were treated with PTZ for 25 injections (dose was adjusted between 24 mg/kg and 35 mg/kg to maintain severe seizure in mice without inducing death caused by a severe seizure). The mouse brains were fixed 3 weeks after the last injection. Control brains were fixed before PTZ injections. Brain slices were immunostained with anti-synaptoporin (x 500) and anti-ZnT3 (x 500) antibodies to observe the mossy fiber sprouting (Figure 3A) and with the anti-doublecortin antibody (x 200) to observe the abnormal migration of granule cells (Figure 3A). Mossy fiber sprouting in the granule cell layer was observed in PTZ-treated slices (Figure 3A). Newborn granule cells, which are immunoreactive for doublecortin, were observed within the hilus in the PTZ-treated slices (Figure 3A). The granule cell layer and hilus shown in Figure 3A is illustrated in Figure 3B.
Repetitive seizures also impair normal behavior of mice. Twelve C57BL/6 mice were treated with PTZ (35 mg/kg, 10 injections), and another 12 mice were treated with saline as a control group. Two weeks after the last injection, the mice were analyzed in a 3-chamber test (Figure 4A) and contextual fear discrimination test (Figure 5A). PTZ-treated mice showed normal sociality (Figure 4B). Mice spent more time in the Stranger 1 chamber than in the Object chamber (saline: p = 0.003, PTZ: p = 0.027) and investigated the Stranger 1 cage more than they investigated the Object cage (saline: p = 0.009, PTZ: p = 0.004). However, PTZ-treated mice showed abnormal social novelty (Figure 4C) indicative of impaired social memory. Control mice spent more time in the Stranger 2 chamber than in the Stranger 1 chamber and investigated the Stranger 2 cage more than they investigated the Stranger 1 cage, whereas the kindled mice did not show any significant difference in time spent in the chambers or time spent investigating the cages (Time in chamber: saline: p = 0.006, PTZ: p = 0.126. Time investigating: saline: p = 0.002, PTZ: p = 0.426). PTZ-treated mice also showed impaired memory in the contextual fear test (Figure 5B). Control mice showed a longer freezing time in the shock condition than in the novel condition, whereas PTZ-treated mice did not show any significant difference in freezing time (saline: p < 0.001, PTZ: p = 0.060). Unpaired t-tests were carried out for statistical analyses.
Figure 1: Brief description of the protocol. (A) Schematic illustration of PTZ-mediated kindling. (B) Illustrations of representative animal behaviors for respective seizure scores. Please click here to view a larger version of this figure.
Figure 2: Assessment of convulsive behavior. The mean seizure scores are indicated in the graph. Six mice were used in each condition, and one series of injections was carried out. After each injection, the seizure scores were monitored and scored. Compared to saline injections, PTZ injections significantly increased seizure severity (p < 0.001: repeated-measures ANOVA). Each seizure score is shown as the mean ± SEM. Please click here to view a larger version of this figure.
Figure 3: PTZ-mediated mossy fiber sprouting and abnormal migration of granule cells. (A) Maximum projected immunohistochemical images of the hilus, granular layer, and molecular layer of hippocampal slices of the mice before kindling (left) and after kindling (right). Anti-synaptoporin (top) and anti-ZnT3 antibodies (middle) were used to visualize the axons of granule neurons (mossy fibers). The anti-doublecortin antibody was used to visualize newborn granule neurons (bottom). PTZ-mediated repetitive seizures induce mossy fiber sprouting (arrows) and abnormal migration of granule cells into the hilus (arrowheads). Scale bar, 50 μm. The approximate position of each image is indicated in (B). Please click here to view a larger version of this figure.
Figure 4: PTZ-mediated abnormal social behavior. (A) Schematic illustration of the 3-chamber test. (B) The mean amount of time spent in each chamber and the mean amount of time spent investigating each cage in the sociality test are shown. (C) The mean amount of time spent in each chamber and the mean amount of time spent investigating each cage in the social novelty test are shown. There were twelve mice in both the PTZ- and saline-treated groups. PTZ-mediated seizures induced abnormal social behavior (***p < 0.001, n.s. = not significant). All times are shown as the mean ± SEM. Please click here to view a larger version of this figure.
Figure 5: PTZ-mediated memory impairment. (A) Schematic illustration of the contextual fear discrimination test. (B) The mean percentage of freezing times in each condition are shown. There were twelve mice in both the PTZ- and saline-treated groups. Graph shows the mean ± SEM. Please click here to view a larger version of this figure.
Here, we present a widely accessible protocol for the establishment of a pharmacological animal model of epilepsy. PTZ-mediated chemical kindling has a long history and is a commonly accepted model for the study of the histopathology and cellular pathology of epilepsy41. The chemical kindling model of epilepsy has been reviewed previously by Suzdak and Jansen, 199542. Pharmacological seizure induction, especially with PTZ, is an easy and simple method for evoking severe seizures. Changes in the injection dose correlate with seizure severity. Thus, identifying the appropriate dose over several trials by changing the PTZ dose and examining the resulting behavior is very easy.
Many researchers have attempted to create knockout or knock-in mice as epilepsy models and have succeeded in producing mice that exhibit spontaneous seizures43,44. However, pharmacological seizure induction is still considered a good model for epilepsy. Another common method for seizure induction other than gene modification involves implanting electrodes into an animal's brain and inducing electroshock-mediated seizures. This method is costly, difficult, and requires surgical skill to implant the electrode at the precise locus in the brain5.
Chemical induction of convulsions enables the rapid investigation of epileptogenesis and anti-epileptic drug screening at low cost2,4. The frequency and severity of spontaneous seizures and SE vary depending on the drug used. Kainic acid and pilocarpine are mainly used to provoke SE and subsequent chronic spontaneous or recurrent seizures45,46,47. On the other hand, PTZ is used both to promote SE when given in a high-dose and to develop chemically kindled animals when given in a subconvulsive dose48,49. In addition, the mechanisms of convulsive drugs that induce seizures are well known. Thus, blocking the mechanism necessary to induce seizure may help to identify anti-epileptic drugs. On the other hand, genetic models are required to investigate the mechanisms that evoke epileptic seizures50. After the mechanisms by which seizures are induced are elucidated, the screening of anti-epileptic drugs may be started.
In the representative results shown here, animal behavior was observed for 30 min after PTZ administration. However, as mentioned in the protocol section, animal behavior is preferably observed for 24 h or at least 6-10 h after PTZ injection, especially once the seizure score reaches 3 or higher. Although an animal monitoring system may be required to observe the animal for the whole day, a prolonged observation is critical for obtaining a deep understanding of epilepsy. In addition, the seizure duration and seizure latency are useful measures to collect. These measurements are important when relating changes in seizure duration and latency to time and seizure severity.
The post-seizure histopathology of chemically kindled animals has been investigated, especially in the hippocampus. Repetitive seizures or SE induce mossy fiber sprouting27,28, abnormal migration of newborn granule neurons25,29, astrogliosis in the hippocampus30, and apoptosis of pyramidal neurons31,32. These histological changes in the brain disrupt neurological functions in epileptic patients. For example, the association of epilepsy with autism spectrum disorders (ASD) and intellectual disability (ID) is well recognized51,52,53. Whether epileptic seizures induce ASD and ID or ASD and ID induce epileptic symptoms is still a complicated question. Recent studies have shown that PTZ-mediated seizures induce ASD-like social-cognitive impairments54 and ID-like learning deficits 55,56,57. These findings indicate that the epilepsy-mediated histopathology elicits the neuronal dysfunction and psychiatric disorders.
Histological changes promoted by epilepsy take time to develop after seizure induction. In this regard, pharmacological seizure induction is advantageous because researchers can control the timing, number and severity of seizures in animals. Including chemical kindling, animal models of epileptogenesis will continue to promote the investigation of both the mechanism of epilepsy induction and related neurophysiological disorders.
The authors have nothing to disclose.
This work was partly supported by JSPS KAKENHI grant numbers 24700349, 24659093, 25293239, JP18H02536, and 17K07086, MEXT KAKENHI grant numbers 25110737 and 23110525, AMED Grant Number JP18ek0109311, and the SENSHIN Medical Research Foundation and the Japan Epilepsy Research Foundation.
Pentylenetetrazole | Sigma-Aldrich | P6500 | |
Sodium chloride | MANAC | 7647-14-5 | |
Mouse | CLEA Japan | C57Bl/6NJcl, postnatal 8 week, male | |
Syringe (1mL) | Terumo | SS-01T | |
Needle(27G x 3/4") (0.40 x 19 mm) | Terumo | NN-2719S | |
Weighing scale | Mettler | PE2000 | This item is a discontinued product. Almost equivalent to FX-2000i with FXi-12-JA from A&D company. |
Paraformaldehyde | Sigma-Aldrich | P6148 | |
Sodium hydroxide | nacalai tesque | 31511-05 | |
Peristatic pump | ATTO | SJ1211 | |
Sucrose | nacalai tesque | 30404-45 | |
Microtome | Yamato | REM-700 | This item is a discontinued product. Almost equivalent to REM-710 |
Microtome blade | Feather | S35 | |
Triton X-100 | Sigma-Aldrich | X-100 | |
anti-synaptoporin antibody | Synaptic systems | 102 002 | |
anti-ZnT3 antibody | Synaptic systems | 197 002 | |
anti-doublecortin | Santa Cruz | sc-8066 | This item is a discontinued product. We did not test equivalent product (sc-271390). |
Contextual fear discrimination test apparatus | O'hara | ||
Three chamber test apparatus | Muromachi |