We provide a protocol for imaging intracellular pH of an epithelial stem cell lineage in live Drosophila ovarian tissue. We describe methods to generate transgenic flies expressing a pH biosensor, mCherry::pHluorin, image the biosensor using quantitative fluorescence imaging, generate standard curves, and convert fluorescence intensity values to pH values.
Changes in intracellular pH (pHi) play important roles in the regulation of many cellular functions, including metabolism, proliferation, and differentiation. Typically, pHi dynamics are determined in cultured cells, which are amenable to measuring and experimentally manipulating pHi. However, the recent development of new tools and methodologies has made it possible to study pHi dynamics within intact, live tissue. For Drosophila research, one important development was the generation of a transgenic line carrying a pHi biosensor, mCherry::pHluorin. Here, we describe a protocol that we routinely use for imaging live Drosophila ovarioles to measure pHi in the epithelial follicle stem cell (FSC) lineage in mCherry::pHluorin transgenic wild type lines; however, the methods described here can be easily adapted for other tissues, including the wing discs and eye epithelium. We describe techniques for expressing mCherry::pHluorin in the FSC lineage, maintaining ovarian tissue during live imaging, and acquiring and analyzing images to obtain pHi values.
Recent studies revealed a role for changes in pHi during cellular differentiation and dysplasia in vivo1,2. These studies found that pHi is remarkably consistent in cells of the same type at the same stage of differentiation, but that it changes as cells transition from one stage to another. In some cases, blocking the changes in pHi partially disrupts differentiation, suggesting that the change in pHi is not just a consequence of changes in cell fate but instead helps to promote the change in cell fate, perhaps through effects on pH-sensitive regulatory proteins or chemical reactions required for differentiation. Future studies have the potential to reveal more insight into the many different roles of pHi dynamics in vivo. However, one of the challenges of studying pHi during differentiation in vivo is obtaining accurate measurements of pHi. Unlike other features of differentiation, such as changes in cellular morphology and gene expression, pHi is a labile chemical property of the cell that is not preserved in cells that have been fixed and permeabilized with standard methods. In addition, pHi may not be stable in cells that are stressed or dying as a result of experimental manipulation. Thus, it is important to keep cells alive and as healthy as possible when measuring pHi. Several vital dyes are available that work well for measuring the pHi of cells in culture3, but in many cases they are not suitable for in vivo studies because they do not penetrate the tissue deeply or evenly enough to provide accurate measurements.
To circumvent the problem of poor dye penetration, we and others have used a genetically encoded probe, mCherry::pHluorin4,5,6,7, that can be expressed specifically in the cell types of interest and imaged in live tissue. pHluorin is a variant of GFP with a higher pKa (~ 7.0 vs. ~ 4.0) that folds more readily at higher pH; so the total fluorescence intensity emitted from a population of pHluorin molecules in the cell increases with increasing pHi8. Importantly, fluorescence is linear within the normal cytosolic range of pHi values. In contrast, the fluorescence of mCherry (pKa ~ 4.5) is insensitive to pH changes within the cytosolic range. These two reporters are covalently linked together as a single chimeric protein, encoded by a single open reading frame, so they are always present in equal amounts. Therefore, the ratio of pHluorin to mCherry fluorescence intensity provides a measurement of pHi that is normalized to the probe concentration in each cell. The ratios can then be converted to estimates of pHi values using a standard curve that is generated by obtaining the pHluorin to mCherry ratios from tissues that have been equilibrated to known pH values.
Here, we describe the methods for using mCherry::pHluorin to measure the pHi of the epithelial FSC lineage in the Drosophila ovary. This well-characterized tissue has been used to model many different aspects of epithelial biology, such as stem cell self-renewal and differentiation9,10,11, collective cell migration12, and the development and maintenance of cell polarity13,14. The follicle epithelium is produced by two FSCs that reside at the anterior edge of the tissue in a structure called the germarium15,16. These cells divide regularly during adulthood to self-renew and produce progeny, called prefollicle cells (pFCs), that can either re-enter the niche and become an FSC or differentiate into one of three different follicle cell types: polar cells, stalk cells, or main body follicle cells. We showed previously that in wildtype tissue, the pHi increases steadily during the early stages of differentiation, from a pHi of approximately 6.8 in FSCs to 7.0 in pFCs, to 7.3 in follicle cells2. Blocking this increase by RNAi knockdown of a ubiquitously expressed sodium/proton exchanger, DNhe2, severely impairs pFC differentiation, whereas increasing pHi by overexpression of DNhe2 causes a mild excess differentiation phenotype. These findings demonstrate that pHi is stably maintained in the early FSC lineage and that it can be experimentally increased or decreased in vivo. The methods described here can be used to measure pHi in either wildtype tissue or various forms of mutant tissues, including RNAi knockdown or overexpression using a Gal4 of interest, and mitotic clones.
NOTE: To measure pHi in the FSC lineage, we calculate the ratio of fluorescence intensities of pHluorin to mCherry in FSCs, pFCs, and follicle cells in physiological conditions, and convert the ratios into pHi values with standard calibration curves for each cell type7. First, live imaging experiments are performed to measure fluorescence intensities of pHluorin and mCherry in germaria dissected into a buffer containing NaHCO3, which mimics physiological conditions1,7. Next, standard curves are generated by measuring pHluorin and mCherry fluorescence intensities in a Na+-free, K+ buffer containing the ionophore nigericin adjusted to two different pH values, 6.5 and 7.5. In the presence of nigericin, pHi equilibrates with the pH of the buffer across the plasma membrane, causing pHi to match the extracellular pH. Lastly, the standard curves are used to convert pHluorin to mCherry ratios to estimated pHi values.
1. Pre-Trial: Preparation Before Measuring pHi In Vivo
NOTE: To measure pHi in vivo, the mCherry::pHluorin transgene must be expressed in the cell type of interest. Below are some common ways to generate transgenic pHluorin flies in the FSC lineage. Generating mCherry::pHluorin clones is particularly useful for identifying FSCs, which are located on the anterior edge of an FSC clone. Tissue specific mCherry::pHluorin expression is useful for measuring pHi across the entire tissue and is also more convenient when combining with expression of an RNAi or transgene.
2. Trial: Measuring pHi in the FSC Lineage
NOTE: The dissection, mounting, and live imaging steps for the bicarbonate buffer and the two nigericin buffer conditions may need to be performed twice: once to determine the microscope settings and a second time to collect experimental data. See the section 2.2 below for more information.
3. Post-trial: Image Analysis
Here we have described the process of measuring pHi in the follicle epithelium, which involves several steps. First, the ovaries are dissected from flies of the appropriate genotype using tools for dissecting and mounting (Figure 1). The ovarioles are then imaged using quantitative fluorescence microscopy and the images are analyzed to obtain measurements of pHi. For each image, the cell types of interest are identified as described in Section 3.1 (Figure 2). The ratio of the fluorescence intensities in the GFP and mCherry channels is converted to pHi values using a standard curve (Figure 3A) as described in Section 3.2. Using this method, we found that pHi increases with differentiation in the early FSC lineage, from 6.8 in FSCs, to 7.0 in prefollicle cells, to 7.3 in follicle cells (Figure 3B). The pHi values of each cell type can be represented graphically, as in Figure 3B, or as a pseudocolored micrograph that shows the differences in pHluorin to mCherry ratios (Figure 4 and Figure 5). In these images, differences in the pHluorin to mCherry ratios are displayed as differences in color, as defined by a LUT. It is important to select a LUT and maximum and minimum values for the range of colors to produce an image that is most representative of the data. Although, in general, the choice of LUT and range settings will not give the appearance of differences that are not present in the image, a less suited choice of LUTs may obscure pHi differences present in the micrograph (Figure 5).
Figure 1: Materials for dissection and mounting Drosophila ovarioles. (A) An image showing: (1) nail polish; (2) vacuum grease and beaker and pipet tip used for applying grease; (3) 23-gauge syringe needles; (4) Dumont Inox forceps, Size 5; (5) 3D printed mounting chamber; (6) 22 X 40 mM glass coverslips; (7) Round Glass Coverslips, 12 mm diameter, 0.13-0.16 mm thickness; and (8) 9-well glass dissecting dish. (B) A close-up image of the 3D printed mounting chamber. (C) An image showing a dissected pair of wildtype ovaries. (D) An image showing well-separated ovarioles. (E) A picture of the 3D chamber with dissected ovaries mounted under a round glass coverslip. The black dots are drops of nail polish used to hold the round coverslip in place. (F) An image of dissected ovarioles underneath a round glass coverslip after mounting. The black box indicates a region of the image with a single dissected ovariole. Scale bars represent approximately 500 µm. Please click here to view a larger version of this figure.
Figure 2: Identifying FSCs, pFCs, and follicle cells. Two examples of germaria with UAS-mCherry::pHluorin and 10930-Gal4 stained with Concanavilin-A. An ROI outlining an FSC, a pFC, and a follicle cell is shown in each image. The mean fluorescence intensities in the pHluorin and mCherry channels are used to calculate the pHluorin to mCherry ratios. Scale bars represent approximately 10 µm. Please click here to view a larger version of this figure.
Figure 3: pHi increases during differentiation in the FSC lineage. Representative results taken from Ulmschneider et al.2 showing: (A) a typical linear regression curve used to calculate pH values from pHluorin to mCherry ratios; and (B) the calculated pHi values with 95% confidence intervals for FSCs, pFCs, and follicle cells. This figure has been adapted after permission, from Ulmschneider et al.2. Please click here to view a larger version of this figure.
Figure 4: Using FIJI to generate a pseudocolored ratiometric image. (A) Images showing the results of each step in the background subtraction process. Starting with an unprocessed image (left panels), the first step is to set the threshold limits so that pixels with intensity values below background are excluded. The upper limit of the threshold is set to maximum. FIJI will color the excluded pixels blue, resulting in an image with a blue background and a clearly visible germarium (middle panels). Note, this step is optional. The second step is to draw an ROI in a part of the image without signal (red squares in middle panels), measure the mean fluorescence intensity of the ROI, and subtract that amount from the entire image, resulting in a background subtracted image (right panels). The third step is to use the Image calculation function to divide the image in the pHluorin channel by the image in the mCherry channel. The result will be an image displayed with the Greys lookup table and the image display values set to span the entire dynamic range provided by the bit depth of the image. The final step is to adjust the image display settings to a more appropriate range and select a lookup table. (B) Sample images showing the result of an image calculation with the minimum display value set to 0 and the maximum display value set to 2.5 using four different lookup tables. The rectangle next to each image shows the colors used across the dynamic range for each lookup table. Notice that for HiLo, 16 color, and Thermal, distinct colors are used for pixels with an intensity value of 0 or maximum (e.g., blue and red, respectively, in HiLo). This provides an easy visual reference of the limits of the dynamic range, allowing the viewer to see that the signal is within the dynamic range. (C) Screen shot showing the options selected when importing a file into ImageJ using the Bio-Formats Import Plug-In. Scale bars represent 10 µm. Please click here to view a larger version of this figure.
Figure 5: Setting the image display values of pseudocolored ratiometric images. The minimum and maximum image display values should be set so that the signal in images from the bicarbonate condition as well as from both nigericin conditions are within the dynamic range. To illustrate this point, two images from each of the three conditions are shown with four different image display settings (0-0.5, 0-1, 0-2.5, and 0-5) using the Thermal lookup table. Notice that, for all three experimental conditions, when the images are displayed with the maximum displayed value set to 0.5, much of the signal is at or near maximum on the colorimetric scale, and when it is set to 5.0, much of the signal is at or near minimum on the colorimetric scale. In both of these cases, the differences in the pHluorin to mCherry ratio across the tissue cannot be easily appreciated so these settings are not ideal. In contrast, maximum display values of 1.0 or 2.5 are much more appropriate. With these settings, the differences in ratios across the tissue can be easily appreciated, and the signals in the images from all three experimental conditions are displayed in colors that are within the dynamic range of the colorimetric scale. Scale bars represent approximately 10 µm. Please click here to view a larger version of this figure.
Here, we describe a method for measuring the pHi of cells in the FSC lineage within wildtype tissue. This protocol has been developed and refined over the past five years, since we first began to study pHi in Drosophila ovarian tissue. During that time, the protocol has been used successfully by multiple investigators in our lab and on at least four different spinning disc and laser scanning microscopes. The reproducibility of our original observation, that pHi increases as cells in the FSC lineage differentiate from the stem cell to the pFC to the follicle cell state, across these multiple trials demonstrates both that this biological phenomenon is robust and that the methodology is reliable. However, in our experience, this is a challenging procedure to master. It requires close attention to detail at every step, and rapid, highly proficient execution of the dissection, mounting, and imaging steps. As stated in the protocol, the dissection and mounting procedure includes a 10 min incubation but should not exceed 15 min total and the imaging procedure must be completed in 45 min. Under ideal conditions, Drosophila ovarioles can be maintained in culture for up to 14 h17, but we found that the tissue begins to die much more rapidly in the nigericin buffers used to generate the standard curves. Our guidelines ensure that all data are collected while the tissue is still well within the window of time that it appears healthy and morphologically normal. This does not leave much time for each step, though, so it is important to plan ahead to make sure that everything is ready to proceed from one step to the next. In fact, it is much more efficient if two people work together on the dissection, mounting, and imaging procedures, with one person executing a step while the other person prepares for the next step.
Since pHi may be sensitive to the experimental manipulations required to image the tissue ex vivo, such as temperature and buffer composition, this method is best to identify relative changes in pHi. Given that the probe consists of two distinct fluorescent proteins, their fluorescence properties like quantum yield, life-time, and folding properties may be affected differently in different cell types. Therefore, it is essential to include samples treated with the nigericin buffer conditions and to use them to generate a new calibration curve for each cell type in every trial. In order to minimize additional sources for variability, keeping all conditions consistent during the course of imaging is emphasized. Samples in nigericin buffer conditions should be prepared and imaged on the same day as those in the bicarbonate buffer condition and the preparation and image acquisition of all samples should be kept as consistent as possible. This is important because the pHi measurements are based on a comparison between the image sets, so experimental differences that affect the detection of the mCherry and pHluorin in one or more of the image sets may decrease the accuracy of the pHi estimates. Factors such as changes in the voltage settings of the photomultiplier tubes (if using a laser scanning confocal) or exposure times (if using a spinning disc confocal) or a dirty lens that reduces the amount of light reaching the camera, will clearly affect the results. But there are a myriad of other more subtle factors that may vary from day-to-day and could also influence the results, such as if the flies are well-fed, the age of the flies, and how long the lasers have been on prior to imaging. Preparing and imaging all three conditions on the same day minimizes these differences and will thus produce the most consistent results. Notably, each time we switched to a new microscope or components of the microscope were upgraded, it was necessary to reoptimize the settings on the new equipment. This often resulted in a change in the average values of the individual measurements but, as long as new calibration curves were generated with each trial, the changes in equipment had a minimal impact on the pHi estimates. In addition, the relevant comparison is often between different cell types that are within the same tissue (e.g., the FSCs, pFCs and follicle cells) and thus are internally controlled for experimental variations.
Although this protocol has focused on measuring pHi of wildtype tissue, the methodology is compatible with standard Drosophila methods for manipulating gene expression, such as expression of RNAi or a transgene using UAS/Gal4, and mosaic analysis. Since mCherry::pHluorin is driven by a UAS promoter, it will always be co-expressed with the RNAi or transgene, and MARCM18 can be used to generate homozygous mutant clones with mCherry::pHluorin as the clonal marker. For the reasons described above, wildtype tissue should be analyzed as a control alongside every trial with a mutant genotype. Lastly, the general principles described here can be applied to the use of mCherry::pHluorin to measure pHi in other tissues as well. Indeed, this protocol was adapted from a protocol for using mCherry::pHluorin to measure pHi in the Drosophila eye7, and we have used similar methodology to image mCherry::pHluorin in the larval brain. Overall, the tools and methods described here provide new opportunities to investigate the many diverse functions of pHi in vivo within living, intact tissue.
The authors have nothing to disclose.
We thank Bryne Ulmschneider for contributions to the protocol and Diane Barber for suggestions on the manuscript. This work was funded by a National Institute of Health grant GM116384 to T.G. Nystul and D.L. Barber.
Fly Stocks | |||
UAS-mCherry::pHluorin[1] | |||
y1 w*;P{GawB}10930/CyO | Bloomington Stock Center | 7023 | |
Act-Gal4 flipout stock | Bloomington Stock Center | 4409 | |
Name | Company | Catalog Number | Yorumlar |
Chemicals for Buffer preparation | |||
NaCl | Sigma Aldrich | S5886 | |
KCl | Sigma Aldrich | P-3911 | |
glucose | Mallinckrodt | 4912 | |
HEPES | Thermo Fisher Scientific | BP310 | |
MgSO4 | Thermo Fisher Scientific | M63 | |
CaCl2 | Sigma Aldrich | C-5080 | |
HCO3 | Sigma Aldrich | S-5761 | |
MgCl2 | Sigma Aldrich | M-9272 | |
NMDG+ | Sigma Aldrich | M-2004 | |
K2HPO4 | Mallinckrodt | 7088 | Use to Make KHPO4 pH 7.4 |
KH2PO4 | Thermo Fisher Scientific | BP362 | Use to Make KHPO4 pH 7.4 |
Concanavalin A, Alexa Fluor 647 Conjugate | Thermo Fisher Scientific | C21421 | 0.25 mg/ml dilution |
Nigericin | Thermo Fisher Scientific | N1495 | |
Name | Company | Catalog Number | Yorumlar |
Dissection and mounting tools | |||
2 Dumont Inox forceps (Size 5) | Thermo Fisher Scientific | NC9473431 | |
2 23-gauge syringe needles | Sigma Aldrich | Z192457 | |
9-well glass dissecting dish | Thermo Fisher Scientific | 13-748B | |
Vacuum Grease | Dow Corning | 1018817 | |
22 X 40 mM glass coverslips | Thermo Fisher Scientific | 12545C | |
Round Glass Coverslips, 12mm diameter, 0.13-0.16mm thickness | Ted Pella, Inc. | 26023 | |
3-D mounting chamber | custom manufactured | .stl and .ipt files for 3-D printer included as supplemental files | |
Name | Company | Catalog Number | Yorumlar |
Other equipment | |||
pH meter | Thermo Fisher Scientific | 13-620-183A | Model: Accumet AB15 |
Dissection microscope | Olympus Corporation | 0H11436 | Model: SZ2-ST |
Confocal Microscope | Leica Biosystems | SP5 or SP8 laser-scanning confocal microscope with a 40× objective with a numerical aperture of 1.3 |