A sialoglycan microarray assay can be used to evaluate anti-Neu5Gc antibodies in human sera, making it a potential high-throughput diagnostic assay for cancer and other chronic inflammation-mediated human diseases.
Cells are covered with a cloak of carbohydrate chains (glycans) that is commonly altered in cancer and that includes variations in sialic acid (Sia) expression. These are acidic sugars that have a 9-carbon backbone and that cap vertebrate glycans on cell surfaces. Two of the major Sia forms in mammals are N-acetylneuraminic acid (Neu5Ac) and its hydroxylated form, N-glycolylneuraminic acid (Neu5Gc). Humans cannot produce endogenous Neu5Gc due to the inactivation of the gene encoding cytidine 5'monophosphate-Neu5Ac (CMP-Neu5Ac) hydroxylase (CMAH). Foreign Neu5Gc is acquired by human cells through the dietary consumption of red meat and dairy and subsequently appears on diverse glycans on the cell surface, accumulating mostly on carcinomas. Consequently, humans have circulating anti-Neu5Gc antibodies that play diverse roles in cancer and other chronic inflammation-mediated diseases and that are becoming potential diagnostic and therapeutic targets. Here, we describe a high-throughput sialoglycan microarray assay to assess such anti-Neu5Gc antibodies in the human sera. Neu5Gc-containing glycans and their matched pairs of controls (Neu5Ac-containing glycans), each with a core primary amine, are covalently linked to epoxy-coated glass slides. We exemplify the printing of 56 slides in a 16-well format using a specific nano-printer capable of generating up to 896 arrays per print. Each slide can be used to screen 16 different human sera samples for the evaluation of anti-Neu5Gc antibody specificity, intensity, and diversity. The protocol describes the complexity of this robust tool and provides a basic guideline for those aiming to investigate the response to Neu5Gc dietary carbohydrate antigen in diverse clinical samples in an array format.
Sias are acidic sugars covering glycan chains on cell-surface glycoproteins and glycolipids in vertebrates. Sia expression is modified in cancer cells1 and correlates with progression and/or metastasis2,3. Two of the major Sia forms in mammals are Neu5Ac and its hydroxylated form, Neu5Gc2. Humans cannot synthesize Neu5Gc due to a specific inactivation of the gene encoding the CMAH enzyme . This non-human Sia metabolically incorporates into human cells as "self," originating from dietary Neu5Gc-rich foods (e.g., red meat)4,5. Neu5Gc is present at low levels on the cell surfaces of human epithelia and endothelia, but it especially accumulates in carcinomas. Neu5Gc is recognized as foreign by the human humoral immune system2,6. The antigenic complexity of Neu5Gc-glycans may arise at multiple levels, including Neu5Gc modification, linkage, underlying glycans and scaffolds, and their density, all reflected by the complexity of anti-Neu5Gc antibody response in humans6. Some of these antibodies serve as carcinoma biomarkers and potential immunotherapeutics7. The advent of the chemoenzymatic synthesis of different sialoglycans8 paved the way for the more in-depth analysis of such antibodies, facilitated by the use of glycan microarray technology9,10. Thus, with the facilitated preparation and manipulation of large libraries of natural and synthetic carbohydrates, glycan microarrays have become a powerful high-throughput technology for investigating the interactions of carbohydrates with a myriad of biomolecules10,11,12,13. In an array format, minimal amounts of materials are used, and this multivalent display of biologically relevant glycans allows for the investigation of thousands of binding interactions in a single experiment. Importantly, this technology can also be applied to biomarker discovery and to monitoring immune responses in various samples7,12.
Successful glycan microarray fabrication requires the consideration of three important aspects: the printer robot type, glycan conjugation chemistry, and detection optics. As to the printing instrument consideration, two techniques are available: contact and non-contact printers. In contact printing, 1-48 steel pins are dipped into a multi-well source plate containing glycan solution and are spotted on functionalized glass slides by directly contacting the glass slide surface. The solution amount delivered to the slide is a function of the lingering duration on the slide surface. Usually, the samples are first pre-spotted on a glass block (to reach homogenous spots) before they are printed on the slide surface. In non-contact printers (e.g., the piezo-electronic printer), the glycans are printed from a glass capillary using controlled electric signals. The electric signal can be finely calibrated to achieve more precise printing relative to contact printing. The size and morphology of the spots are also relatively more homogeneous. An additional advantage is the recycling of the sample back to the source plate after printing. Nevertheless, the major disadvantage of piezo-electronic printers is the printing tip limitation (4 or 8), resulting in a very long printing duration, which requires special attention to slide stability, temperature, humidity, and sample evaporation. The non-contact inkjet printer requires larger sample volumes14.
In contrast to the limited available options for printing methods, glycan conjugation chemistry is a more complex consideration, with many options to choose from. Selected immobilization chemistry must account for both the active groups on the glycans and the slide surface reactivity. The glycans to be immobilized onto a specific microarray surface, either synthetically synthesized or naturally isolated, all require an identical reactive group. In addition, the glycans need to be pure and homogenous. On the other hand, the immobilization surface and chemistry should provide reproducibility and reliable attachment density. Multiple immobilization methods have been developed with either covalent or non-covalent (physical absorption) attachment10,11,12,13. For highly detailed information on printed glycan microarray technology for the uninitiated investigator, refer to these excellent reviews 13,15. Importantly, the recent Minimum Information Required for a Glycomics Experiment (MIRAGE) initiative describes guidelines for sample preparation16 and for reporting data from glycan microarray analyses17 to improve the standards in this growing field.
Here, we describe a detailed protocol for the fabrication of sialoglycan microarrays using a specific contact nano-printer in a 16-well format. Each of the glycans have a primary amine that mediate their covalent link to epoxy-activated glass slides. We also describe the development and analysis of one slide using various human sera samples, antibodies, and Sia-binding plant lectins. Sialoglycan microarray assays involve several major steps that include array fabrication, processing, development, and analysis. Array fabrication requires planning the array layout, preparing the glycans and source plate, programming the nano-printer, and printing the slides. Subsequently, the slides are processed, developed, and analyzed (Figure 1).
Human sera samples were obtained from the Israeli Blood Bank and were used in accordance with the Helsinki declaration and Tel Aviv University Institutional Review Board.
1. Array Fabrication Planning and Layout
2. Preparation of Glycans and the Source Plate
3. Programing the Nano-printer
4. Printing Designed Arrays
NOTE: All steps should be carried out in a clean room with a humidity of 60-70% and with appropriate gloves and clothing for protection
5. Processing and Developing the Arrays
6. Array Scanning and Data Analysis
Array Printing, Development, and Analysis:
Printing a sialoglycan microarray with multiple glycan samples and human IgG STD curves in 16 different blocks requires thorough calibration to ensure that all samples are printed as uniformly as possible in all 16 blocks per slide and to all slides in the same print run. Therefore, multiple calibration experiments are required before the specific printing parameters are determined, including buffer composition for each type of sample, slide type and manufacture, 384-well plate type, humidity levels, sample volume in the 384-well plate, amount of pre-printing for every type of sample, human IgG STD curve concentrations, and marker type. The durability of such printed sialoglycan array slides was validated to last for up to 10 months in a vacuum-sealed box in the dark at room temperature. In every printing experiment, uniformity is further monitored and validated through quality control experiments using Sia binding lectins and antibodies. The developing and scanning protocols had been optimized to achieve uniformity and accuracy by comparing samples within and between slides from the same print run. The slides are developed with the 16-well divider, which ensures the proper separation between blocks, using optimized blocking conditions (chemical and biological), washes, and incubation times. The primary and secondary detection had extensively been calibrated to ensure maximum detection with minimal background and non-specific binding. Upon slide scanning and analysis, output results were transferred to a spreadsheet file and analyzed to determine the detection in each spot. Each spot was subjected to an outlier check and omitted if it did not meet QC (if the %CV is >20 and the spot is outside the range of one standard deviation away from the mean of the four replicates). Then, the mean signal intensity after the subtraction of local background was averaged for replicate spots per sample to generate the relative fluorescence unit (RFU) data point per printed sample. Once the uniformity of the IgG STD curves was validated in all tested blocks, the RFU values were normalized into ng/µL IgG, allowing for the chance to better compare samples within and between experiments.
Sia-binding High-throughput Assay:
Sialoglycan arrays can be used to detect determinants (e.g., proteins, lectins, antibodies, viruses, etc.) that bind Sia-containing glycans. For QC after printing, Sia-binding plant lectins and anti-Neu5Gc IgY are used19. SNA binds α2-6-linked Sia, MALII binds α2-3-linked Sia, and anti-Neu5Gc IgY binds Neu5Gc-containing sialoglycans but does not bind Neu5Ac-containing sialoglycans19, as shown in Figure 2A. The QC experiment aims to validate spot printing and identity and the lack of variability between the printed blocks using the four different pins. Block-to-block variability is monitored by developing four blocks for every primary detection per slide and by comparing blocks that were printed with each one of the four pins with the same primary detection moiety. A comparison is then done to ensure that no major differences are present.
Human sera contain diverse anti-Neu5Gc antibodies6 with implication for various human diseases2,21,22,23. To evaluate sialoglycan recognition in human sera IgG, 12 sera from healthy human donors were analyzed on the printed sialoglycan microarray and developed using fluorescently labeled anti-human IgG (Figure 2B). Each printed block contains a human IgG STD curve that is comparable and homogenous in all blocks (Figure 2C). Only after validating the quality of the STD curves in each block (Figure 2C) are glycan spots results normalized according to the slope in the block and then multiplied by the dilution factor. As shown in Figure 2B, all tested human sera contain various levels of anti-Neu5Gc IgG, with almost no recognition of the matched pairs of Neu5Ac-containing sialoglycans. Furthermore, anti-Neu5Gc IgG recognition patterns are highly diverse between these 12 different sera, both in the level of intensity and of diversity.
Figure 1: Overview of Array Printing, Developing, and Image Analysis. (A) Neu5Gc9Acα2-6GalNAcαProNH2 is shown as a representative Neu5Gc-containg Sia glycan, with a primary amine that is printed on epoxy-coated glass slides. (B) Printed arrays are developed with various Sia-binding proteins, followed by detection with an appropriate fluorescently labeled secondary antibody. Each sub-array can be developed individually. (C) Scanning the probed slide in a fluorescence scanner generates an image that is further analyzed using the scanner image software. The sub-arrays are overlaid with a grid mapping each spot on the arrays and the fluorescence detected for each spot. The results are then transferred intoa spreadsheet file. A single array in a single well is schematically represented. Please click here to view a larger version of this figure.
Figure 2: Profiles of Sialoglycan Microarrays Using Various Sia-binding Proteins.
Slides were developed with 16 different primary detection moieties, one in each block. (A) Representative 3 blocks of a QC slide showing the binding patterns of the Sia-specific plant lectins SNA and MALII and polyclonal mono-specific chicken anti-Neu5Gc IgY. The results are presented as the RFU in heatmap format for each individual block (red, white, and blue, representing the 100th, 50th, and 0th percentiles, respectively). (B) 12 different healthy human sera were tested at a 1:100 dilution and detected with anti-huamn IgG to profile anti-Neu5Gc IgG reactivity. RFU data were normalized to ng/µL by dividing each value with the IgG STD curve slope in each specific block and then multiplied by the dilution factor. The data is represented in heatmap format for all blocks combined (red, white, and blue, representing te 100th, 50th, and 0th percentiles, respectively). (C) Human IgG STD curves of the 12 blocks developed with human sera that had been used to normalize the data. Please click here to view a larger version of this figure.
Glycan ID | Structure | |||
1 | Neu5,9Ac2α3Galβ4GlcNAcβO(CH2)2CH2NH2 | |||
2 | Neu5Gc9Acα3Galβ4GlcNAcβO(CH2)2CH2NH2 | |||
3 | Neu5,9Ac2α6Galβ4GlcNAcβO(CH2)2CH2NH2 | |||
4 | Neu5Gc9Acα6Galβ4GlcNAcβO(CH2)2CH2NH2 | |||
5 | Neu5Acα6GalNAcαO(CH2)2CH2NH2 | |||
6 | Neu5Gcα6GalNAcαO(CH2)2CH2NH2 | |||
7 | Neu5,9Ac2α3Galβ3GlcNAcβO(CH2)2CH2NH2 | |||
8 | Neu5Gc9Acα3Galβ3GlcNAcβO(CH2)2CH2NH2 | |||
9 | Neu5,9Ac2α3Galβ3GalNAcαO(CH2)2CH2NH2 | |||
10 | Neu5Gc9Acα3Galβ3GalNAcαO(CH2)2CH2NH2 | |||
11 | Neu5Acα3Galβ4GlcNAcβO(CH2)2CH2NH2 | |||
12 | Neu5Gcα3Galβ4GlcNAcβO(CH2)2CH2NH2 | |||
13 | Neu5Acα3Galβ3GlcNAcβO(CH2)2CH2NH2 | |||
14 | Neu5Gcα3Galβ3GlcNAcβO(CH2)2CH2NH2 | |||
15 | Neu5Acα3Galβ3GalNAcαO(CH2)2CH2NH2 | |||
16 | Neu5Gcα3Galβ3GalNAcαO(CH2)2CH2NH2 | |||
17 | Neu5Acα6Galβ4GlcNAcβO(CH2)2CH2NH2 | |||
18 | Neu5Gcα6Galβ4GlcNAcβO(CH2)2CH2NH2 | |||
19 | Neu5Acα6Galβ4GlcβO(CH2)2CH2NH2 | |||
20 | Neu5Gcα6Galβ4GlcβO(CH2)2CH2NH2 | |||
21 | Neu5Acα3Galβ4GlcβO(CH2)2CH2NH2 | |||
22 | Neu5Gcα3Galβ4GlcβO(CH2)2CH2NH2 | |||
23 | Neu5,9Ac2α6GalNAcαO(CH2)2CH2NH2 | |||
24 | Neu5Gc9Acα6GalNAcαO(CH2)2CH2NH2 | |||
25 | Neu5Acα3GalβO(CH2)2CH2NH2 | |||
26 | Neu5Gcα3GalβO(CH2)2CH2NH2 | |||
27 | Neu5Acα6GalβO(CH2)2CH2NH2 | |||
28 | Neu5Gcα6GalβO(CH2)2CH2NH2 | |||
29 | Neu5,9Ac2α3GalβO(CH2)2CH2NH2 | |||
30 | Neu5Gc9Acα3GalβO(CH2)2CH2NH2 | |||
31 | Neu5,9Ac2α6GalβO(CH2)2CH2NH2 | |||
32 | Neu5Gc9Acα6GalβO(CH2)2CH2NH2 | |||
33 | Neu5Acα3Galβ3GalNAcβO(CH2)2CH2NH2 | |||
34 | Neu5Gcα3Galβ3GalNAcβO(CH2)2CH2NH2 | |||
35 | Neu5,9Ac2α3Galβ3GalNAcβO(CH2)2CH2NH2 | |||
36 | Neu5Gc9Acα3Galβ3GalNAcβO(CH2)2CH2NH2 | |||
37 | Neu5,9Ac2α6Galβ4GlcβO(CH2)2CH2NH2 | |||
38 | Neu5Gc9Ac6Galβ4GlcβO(CH2)2CH2NH2 | |||
39 | Neu5,9Ac2α3Galβ4GlcβO(CH2)2CH2NH2 | |||
40 | Neu5Gc9Ac3Galβ4GlcβO(CH2)2CH2NH2 |
Table 1: List of Printed Glycans.
Primary / Secondary | Antibody / Lectin | Stock concentration | Specificity | Working Dilution / Concentration |
Primary detection | Biotinilated-MALII | 1 mg/mL | Sialic acid in α2-3 linkage | 1:50, 20 µg/mL |
Biotinilated-SNA | 2 mg/mL | Sialic acid in α2-6 linkage | 1:100, 20 µg/mL | |
Chicken anti-Neu5Gc IgY | N.D | Neu5Gc Sialic acid | 1:7,000 | |
Human Serum | 100% | Numerous epitopes | 1:100 | |
Secondary Detection | Cy3-Streptavidin | 0.75 mg/mL | Biotin | 1:500, 1.5 µg/mL |
Cy3-anti Chicken IgY | 0.75 mg/mL | Chicken IgY | 1:2,000, 0.375 µg/mL | |
Cy3-anti Human IgG H+L | 0.6 mg/mL | Human IgG | 1:1,500, 0.4 µg/mL |
Table 2: List of Primary and Secondary Detection Proteins.
Supplemental Figures: Please click here to download this file.
A successful glycan microarray fabrication requires careful planning and includes several important steps in the protocol. These include: (1) planning the block and plate layouts that define all subsequent parameters (e.g., distances, spacing, amount of samples, and printing); (2) cleaning the pins and ensuring pin integrity, which is critical for controlling spot homogeneity; (3) maintaining high humidity during printing, critical to avoiding sample evaporation during long print runs, which could compromise spot homogeneity; (4) selecting proper alignment and analysis parameters, which can influence the results (e.g., background subtraction method, threshold, and spot size flexibility).
The method can be further modified to meet specific experimental designs and goals. For example, the pre-spotting number can be modified to better suit each type of material to be printed on the array. The pin washing step during the print can be optimized to fit different printed materials, with either shorter or extended wash cycles. Furthermore, the amount of spots a pin prints per dip can be modified to include more or fewer spots but requires separate calibration for each type of material used on the array. The type of the fluorescence marker and its concentration can be modified, as long as it contains the proper chemical group for conjugation (i.e., primary amine for epoxy-coated slides). The concentrations and types of STD curves can be extended (e.g., human/mouse/other organism IgG, IgM, IgA, etc.). Buffer conditions can be optimized to fit different materials, preferably lacking materials with primary amine to avoid non-specific binding to the array, which would cause increased background. Importantly, for optimal detection of Neu5Gc, the biological blocking reagent must be free of Neu5Gc (e.g., avoid BSA amd milk), as this may reduce Neu5Gc-sialoglycan detection and increase background19,20. Primary and secondary detection concentrations should be optimized to avoid high background and non-specific binding. In addition, scanning parameters (e.g., power, gain, and resolution) can be modified to reduce background or enhance low signals. Finally, alignment and analysis parameters can be modified to suit high background or differently shaped features. Further information and guidelines regarding the recommended standards for reporting glycan microarray data has recently been described by the MIRAGE initiative17, which can eventually facilitate data sharing and interpretation.
In summary, glycan microarrays provide a robust tool for investigating glycan-biomolecule interactions and can be adapted to various biological samples. Anti-Neu5Gc antibodies play different roles in human disease23. For example, in cancer, anti-Neu5Gc antibodies play dual roles: on the one hand, they serve as potential biomarkers, but on the other hand, they serve as potential therapeutics7,21,24. These antibodies also contribute to the exacerbation of atherosclerosis25, the efficacy of xenotransplantation20,26, and the effect of glycosylated biotherapeutics27. Thus, profiling anti-Neu5Gc antibodies in various human samples is of growing interest, and high-throughput assays, such as the one described here, can contribute to furthering our understanding of their roles in human health and disease.
The authors have nothing to disclose.
This work was supported in part by a Research Career Development Award from the Israel Cancer Research Fund, a grant from the Israeli National Nanotechnology Initiative and the Helmsley Charitable Trust for a Focal Technology Area on Nanomedicines for Personalized Theranostics (V.P-K), and National Institutes of Health grant R01GM076360 (to X.C.).
Primary-amine containing sialoglycans | Glycohub, Inc., Davis, CA, USA (http://www.glycohub.com/services) | Contact info@glycohubusa.com for compound requests | Printed glycans |
Monosodium phosphate monohydrate | Sigma | S9638 | Printing buffer component |
Disodium phosphate heptahydrate | Sigma | S9390 | Printing buffer component |
Phosphate buffered saline | Hy-Labs | BP-507/500D | Printing buffer/ incubation/washing buffer |
Tris-base | Sigma | T1503 | Slide blocking reagent |
Glycerol | Sigma | G-7893 | Printing buffer component |
Ethanolamine | Thermo-Fisher Scientific | 0700/08 | Slide blocking reagent |
Ovalbumin (Grade V) | Sigma | A5503 | Slide Blocking protein |
Tween-20 | Sigma | P7949 | Slide washing detergent |
Alexa 555-Hydrazide | Thermo-Fisher Scientific | A20501MP | Marker on array |
ChromPure Human IgG, whole molecule | Jackson Immunoresearch | 009-000-003 | Printing component |
Biotinylated- SNA | Vector Laboratories | B-1305 | Plant Lectin – binding Sia-alpha2–6-linked |
Biotinylated-MALII | Vector Laboratories | B-1265 | Plant Lectin – binding Sia-alpha2–3-linked |
Chicken-anti Neu5Gc IgY | BioLegend | 146903 | Primary detection |
Cy3-Streptavidin | Jackson Immunoresearch | 016-160-0848 | Biotin binding |
Cy3-anti Human IgG | Jackson Immunoresearch | 109-165-088 | Secondary detection against human IgG |
Cy3-anti Chicken IgY | Jackson Immunoresearch | 703-165-155 | Secondary detection against chicken IgY |
Human sera samples | Israeli Blood Bank | Primary detection | |
Compressed Nitrogen (Grade 5) | General dusting/drying tool | ||
Epoxy-coated slides | Corning | 40044 | Slides |
Epoxy-coated slides | PolyAn | 2D 104-00-221 | Slides. In this type of slides the surface is more hydrophobic (compared to Coring slides) therefore the glycans Print Buffer would need to be supplemented with 0.005% Tween-20 to obtain 100 µm size spots. |
384-well microtiter plate | Genetix | 2070 | Printing plate |
VWR lab marker | VWR | 52877-310 | Slide labeling |
Staining Tube | ArrayIt | MST | Slide developing tool |
Staining bath | VWR | 25608-904 | Slide developing tool |
Slides glass holders | VWR | 631-9321 | Slide developing tool |
GenePix Scanner | Molecular devices | 4000B | Slide scanner |
LM-60 NanoPrinter | ArrayIt | LM-60 | Array printer |
Pins | ArrayIt | 946MP3 | Printing pins |
ProPlate Module | Grace Bio-Labs | P37004 | Slide developing module |
Distilled water | Bio-Lab | 2321020500 | Required for arrayer and humidifier |
Electronic Multi Pippete, 8 Channel , volume range 2-125 μL | Thermo-Fisher Scientific (Matrix) | MA-2131 Impact2 Equalizer 384 | Multi pippete for sample dispansing into 384-well plate |