This protocol outlines the cefoperazone mouse model of Clostridium difficile infection (CDI) using a clinically-relevant and genetically-tractable strain, R20291. Emphasis on clinical disease monitoring, C. difficile bacterial enumeration, toxin cytotoxicity, and histopathological changes throughout CDI in a mouse model are detailed in the protocol.
Clostridium difficile is an anaerobic, gram-positive, spore-forming enteric pathogen that is associated with increasing morbidity and mortality and consequently poses an urgent threat to public health. Recurrence of a C. difficile infection (CDI) after successful treatment with antibiotics is high, occurring in 20-30% of patients, thus necessitating the discovery of novel therapeutics against this pathogen. Current animal models of CDI result in high mortality rates and thus do not approximate the chronic, insidious disease manifestations seen in humans with CDI. To evaluate therapeutics against C. difficile, a mouse model approximating human disease utilizing a clinically-relevant strain is needed. This protocol outlines the cefoperazone mouse model of CDI using a clinically-relevant and genetically-tractable strain, R20291. Techniques for clinical disease monitoring, C. difficile bacterial enumeration, toxin cytotoxicity, and histopathological changes throughout CDI in a mouse model are detailed in the protocol. Compared to other mouse models of CDI, this model is not uniformly lethal at the dose administered, allowing for the observation of a prolonged clinical course of infection concordant with the human disease. Therefore, this cefoperazone mouse model of CDI proves a valuable experimental platform to assess the effects of novel therapeutics on the amelioration of clinical disease and on the restoration of colonization resistance against C. difficile.
Clostridium difficile is an anaerobic, gram-positive, spore-forming bacillus that causes life-threatening diarrhea1. C. difficile infection (CDI) is associated with increased human morbidity and mortality and results in over $ 4.8 billion in healthcare costs per year1-4. In 2013, the Centers for Disease Control and Prevention categorized C. difficile as an urgent antibiotic resistance risk, indicating that it poses an urgent threat to public health1. Currently, antibiotic treatment with vancomycin and metronidazole are considered the standard of care for CDI5. Unfortunately, recurrence of CDI after successful treatment with antibiotics is high, occurring in 20 – 30% of patients2,5-7. Therefore, the discovery of novel therapeutics against this enteric pathogen is necessary. To evaluate therapeutics against C. difficile, an animal model approximating the human disease in a clinically-relevant strain is needed.
Initially, Koch's postulates were established for C. difficile in 1977 using a clindamycin-treated Syrian hamster model8. This model is still utilized today to investigate the effects of C. difficile toxins on pathogenesis9,10. However, CDI in the hamster model results in high mortality rates and does not approximate the chronic insidious disease manifestations that can be seen in humans with CDI 10,11. Based on the accessibility and reagent availability of murine platforms in research, a mouse model of CDI is relevant.
In 2008, a robust mouse model of CDI was established by treating mice with an antibiotic cocktail in drinking water (kanamycin, gentamicin, colistin, metronidazole, and vancomycin) for 3 days followed by an intraperitoneal injection of clindamycin12. This rendered mice susceptible to CDI and severe colitis. Depending on the inoculum dose administered, a range of clinical signs and lethality can be observed using this model. Since this time, various antibiotic regimens have been investigated that alter the murine gut microbiota, decreasing colonization resistance to the point where C. difficile can colonize the gastrointestinal tract (reviewed in Best et al. and Lawley & Young)13,14.
More recently, a broad spectrum cephalosporin, cefoperazone, given in the drinking water for 5 or 10 days reproducibly renders mice susceptible to CDI15. Since administration of third-generation cephalosporins are associated with an increased risk of CDI in humans, use of the cefoperazone model more accurately reflects naturally-occurring disease16. Cefoperazone-treated mice susceptible to C. difficile have been challenged with both C. difficile spores and vegetative cells of a variety of strains ranging in clinical relevance and virulence17. Despite some of the original studies utilizing C. difficile vegetative cells as the infectious form, C. difficile spores are considered the major mode of transmission18.
In the last decade, C. difficile R20291, a NAP1/BI/027 strain, has emerged, causing epidemics of CDI19,20. We sought to determine the clinical course of disease when cefoperazone-treated mice were challenged with the clinically-relevant and genetically-tractable C. difficile strain, R20291. This protocol details the clinical course, including weight loss, bacterial colonization, toxin cytotoxicity, and histopathological changes in the gastrointestinal tract of mice challenged with C. difficile R20291 spores. Overall, this mouse model proves to be a valuable experimental platform for CDI approximating human disease. This characterized mouse model can thus be utilized to assess the effects of novel therapeutics on the amelioration of clinical disease and on the restoration of colonization resistance against C. difficile.
Ethical Statement:
The Institutional Animal Care and Use Committee (IACUC) at North Carolina State University College of Veterinary Medicine (NCSU) approved this study. The NCSU Animal Care and Use policy applies standards and guidelines set forth in the Animal Welfare Act and Health Research Extension Act of 1985. Laboratory animal facilities at NCSU adhere to guidelines set forth in the Guide for the Care and Use of Laboratory Animals. The animals' health statuses were assessed daily, and moribund animals were humanely euthanized by CO2 asphyxiation followed by secondary measures. Trained animal technicians or a veterinarian performed animal husbandry in an AAALAC-accredited facility during this study.
1. Administration of the Antibiotic Cefoperazone in Drinking Water to Achieve Susceptibility to C. difficile Colonization and Disease
NOTES: 5- to 8-week-old C57BL/6 WT mice (females and males) were purchased and quarantined for 1 week prior to starting the antibiotic water administration. Following quarantine, the mice were housed with autoclaved food, bedding, and water. Cage changes were performed weekly by laboratory staff in a laminar flow hood.
2. Preparation of the C. difficile Spore Inoculum and the Oral Gavage of the Mice
NOTE: Before beginning, ensure that the following items are placed in the anaerobic chamber for at least 24 hr: 1x phosphate-buffered saline (PBS; see Materials), taurocholate cycloserine cefoxitin fructose agar (TCCFA) plates (see Materials and the supplemental file), and a sterile L-shaped spreader.
NOTE: Mice challenged with C. difficile spores should be housed in a Biosafety Level 2 animal facility.
3. Monitoring Mouse Weight Loss and Clinical Signs of Disease throughout C. difficile Infection
4. Bacterial Enumeration of C. difficile from Mouse Feces and Cecal Content
NOTE: Before beginning, ensure that the following items are placed into the anaerobic chamber for at least 24 hr: 1x PBS (see Materials), TCCFA plates (see Materials), a sterile L-shaped spreader, and sterile microcentrifuge tubes and/or PCR plates for dilutions.
5. Vero Cell Cytotoxicity Assay to Quantify C. difficile Toxin Cytotoxicity
NOTE: It is recommended that this assay be performed after completion of the mouse model on samples collected at necropsy and stored at -80 °C. Aseptic cell culture techniques are essential for preventing contamination of Vero cells during this assay. This protocol takes 2 days to perform. All feces and intestinal content utilized in this assay must be stored in a weighed, sterile microcentrifuge tube (denoted with the "tube weight," see section above). The final tube weight (including the contents) is measured via an analytical scale to the nearest four decimal places (see section above). Use of a multi-channel pipette is recommended for this assay.
NOTE: Before beginning, ensure that the following items are available: Vero Cells, Dulbecco's modification of Eagle medium (DMEM) 1x with 10% heat-inactivated fetal bovine serum (FBS) and 1% penicillin/streptomycin media (denoted as "DMEM 1x media;" see Materials and the supplemental file), 0.25% Trypsin-EDTA, 1x PBS, 0.4% Trypan Blue, a 96-well cell culture flat-bottom plate, a 96-well filter plate, Clostridium difficile Toxin A (aliquot in 3 µl at 1 µg/µl in Ultra-Pure water and store at -80 °C), Clostridium difficile Antitoxin, a worksheet (for calculations and plate maps; see supplemental files).
NOTE: Caution should be taken during this assay for personnel exposure to C. difficile and its toxin.
During a representative study, 5-week-old C57BL/6 WT mice were pretreated with cefoperazone in their drinking water (0.5 mg/ml) for 5 days and allowed a 2-day wash out with regular drinking water. Mice were challenged with 105 spores of C. difficile R20291 via oral gavage on day 0 (Figure 1A). Mice were monitored for weight loss and clinical signs (lethargy, inappetence, diarrhea, and hunched posture) of CDI for 14 days. The challenge of C57BL/6 WT mice with C. difficile R20291 spores resulted in diarrhea within 24 hr and significant weight loss within 48 hr post-challenge (Figure 1B). Although not observed in this experiment, mice challenged with a higher dose of C. difficile R20291 can become severely ill or have greater than 20% weight loss by 48 – 72 hr post-challenge, thus necessitating humane euthanasia. Therefore, mice require a minimum of twice-daily monitoring after challenge with C. difficile spores.
In this representative study, a significant amount of weight loss and clinical signs of disease in mice were also observed on days 2 – 7 post-challenge (Figure 1B). At 7 days post-challenge, mice began to gain weight, and clinical signs of disease subsided. By the last week of the experiment, the mice appeared clinically normal, with no evidence of the clinical signs of CDI, including diarrhea.
Fecal pellets were collected prior to the challenge with C. difficile spores and every 48 hr post-challenge (Figure 1C). Prior to the antibiotic treatment, mice were not colonized with C. difficile. Within 24 hr post challenge with C. difficile spores, mice were colonized with 107 CFUs of C. difficile per g of feces (Figure 1C). Mice remained persistently colonized with C. difficile throughout the experiment, despite no evidence of weight loss or clinical signs of CDI for the last 7 days of the experiment.
Figure 1: Cefoperazone Treated Mice Challenged with C. difficile R20291 Exhibit Weight Loss and are Colonized with C. difficile. A) 5-week-old C57BL/6 WT JAX mice (n = 3M/3F per group) were pretreated with cefoperazone in their drinking water (0.5 mg/ml) for 5 days and allowed a 2-day wash out with regular drinking water. Mice were challenged with 105 spores of C. difficile R20291 via oral gavage on day 0. Mice were monitored for weight loss and clinical signs (lethargy, inappetence, diarrhea, and hunched posture) of CDI for 14 days. Feces was collected and used for bacterial enumeration prior to starting cefoperazone, immediately after finishing the antibiotic, and on days 0, 1, 2, 3, 4, 5, 7, 9, 11, 13, and 14 throughout infection. Necropsy was performed on days 0, 2, 4, 7, and 14. B) The mice lost a significant amount of their baseline weight after challenge with C. difficile R20291. The average bodyweight of mice was measured daily from day 0. Significant weight loss was seen on days 2 through 7 when compared to day 0, the baseline weight. C) C. difficile R20291 bacterial load in the feces after the challenge. Within 24 hr after the challenge with C. difficile spores, all mice were colonized with 107 CFUs (colony-forming units) per g of feces. No significant differences in these parameters were seen between females and males. Significance was determined by the non-parametric Kruskal-Wallis one-way ANOVA test followed by Dunn's posttest (*, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001; ****, p ≤ 0.0001). Error bars represent the standard deviations from the mean. Please click here to view a larger version of this figure.
Four mice (2 males and 2 females) were humanely euthanized and prepared for necropsy on day 0, prior to infection, to serve as uninfected controls. In addition, one mouse from each cage was humanely euthanized and prepared for necropsy on days 2, 4, 7, and 14 post-challenge (Figure 1A). Enumeration of C. difficile within the cecal content was performed at each necropsy. In concordance with fecal enumeration, no C. difficile was detected in the cecal content of mice prior to the challenge with C. difficile. At 48 hr post-challenge, mice were colonized with approximately 108 CFUs of C. difficile per g of cecal content (Figure 2A). All mice remained persistently colonized throughout the experiment.
Cecal content was also assessed throughout the infection for the presence of C. difficile toxin using the Vero cell cytotoxicity assay. No evidence of C. difficile toxin cytotoxicity was detected in cecal contents prior to the challenge (Figure 2B). C. difficile cytotoxicity was detected 2 days after the challenge with C. difficile spores and persisted throughout the infection. Despite fairly uniform colonization with C. difficile, variation in the levels of C. difficile cytotoxic activity is evident in individual mice (Figure 2B).
The majority of mouse cecal content neutralized with C. difficile antitoxin during the Vero cell cytotoxicity assay and had no evidence of cytotoxicity (Vero cell rounding) in the dilutions performed. However, a few individual mice, despite retesting, had evidence of 50 – 100% cytotoxicity in the 10-1 dilution (dilution where the sample is most concentrated), with no evidence of Vero cell rounding in the other dilutions. The antitoxin utilized in this assay is a neutralizing polyclonal antibody to C. difficile toxin, prepared in goats27. Therefore, this antitoxin may not neutralize the C. difficile binary toxin that is produced by strain R20291. However, the C. difficile binary toxin is not considered to be cytotoxic10. Excessive C. difficile toxin unable to be neutralized by the antitoxin or the presence of another cytotoxic agent other than C. difficile toxin could be contributing to this finding. This observation did not affect the determination of the cytotoxicity titer for these samples, since each sample's last dilution with the 80% Vero cell rounding had no evidence of cytotoxicity when combined with the antitoxin at the specified dilution.
Figure 2: Colonization of the Cecum and Cytotoxicity during Infection with C. difficile R20291. A) Mice ceca remained persistently colonized with C. difficile throughout the experiment, despite resolution of clinical signs and observed weight gain. All mice were colonized with greater than 108 CFUs per g of cecal contents when assessed at 2 days post-challenge. B) Vero cell cytotoxicity assay from cecal content throughout infection with C. difficile R20291. Following the challenge with C. difficile spores, mice had significant levels of cytotoxicity, as measured in log10 reciprocal dilution of toxin per g of cecal content on days 2, 4, and 7 post-challenge compared to day 0 (medians represented by the line). Significance was determined by the non-parametric Kruskal-Wallis one-way ANOVA test followed by Dunn's posttest (*, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001; ****, p ≤ 0.0001). Error bars represent the standard deviations from the mean. Please click here to view a larger version of this figure.
It is recommended that histologic evaluation is conducted by a board-certified veterinary pathologist in a blinded manner. For tissue scoring, a 0-4 numerical scoring system should be employed to separately assess edema, inflammatory cell infiltration, and epithelial cell damage in the ileum, cecum, and colon based upon a previously-published scoring scheme17.
Upon blinded histopathologic examination of the murine ileum, cecum, and colon following challenge with C. difficile R20291, the most significant pathologic changes were noted in the cecum (Figure 3). The total cecal histologic scores were significantly different between day 0 and days 2 and 4 post-challenge. No significant lesions were noted in the ileum throughout infection (Figure 3). Milder lesions were noted in the colon. The total colonic histological scores were significantly different between day 0 and days 2 and 7 post challenge (Figure 3).
Representative H&E sections of the ileum, cecum, and colon throughout infection are available in Figure 4. Each image has its respective total histological score and individual scores for epithelial damage, inflammation, and edema, as determined by a blinded board-certified veterinary pathologist (SAM).
Figure 3: Histological Scoring of the Murine Ileum, Cecum, and Colon during Infection with C. difficile R20291. Total histological scores were calculated by adding all three scores from the parameters assessed: epithelial damage, inflammation, and edema. No significant histopathological changes were noted in the ileum throughout infection. Cecal tissue contained the most significant histological lesions during CDI. The total cecal histological scores were significantly different from day 0 on days 2 and 4 post-challenge. Milder lesions were noted in the colon. The total colonic histological scores were significantly different from day 0 on days 2 and 7 post-challenge. Significance was determined by the non-parametric Kruskal-Wallis one-way ANOVA test followed by Dunn's posttest (*, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001; ****, p ≤ 0.0001). Error bars represent the standard deviations from the mean. Please click here to view a larger version of this figure.
Figure 4: Histopathology During Infection with C. difficile R20291. This panel contains representative H&E sections of ileum, cecum, and colon throughout infection with C. difficile R20291. The total histological scores are in parentheses ( ) for the corresponding day and tissue listed: for the ileum day 0 (0), day 2 (1), day 4 (0), day 7 (0), and day 14 (0); for the cecum day 0 (0), day 2 (5), day 4 (4), day 7 (3), and day 14 (3); and for the colon day 0 (0), day 2 (4), day 4 (1), day 7 (4), and day 14 (2). Photomicrographs were obtained on a light microscope with a 5 megapixel digital camera and its accompanying software (the scale bar represents 200 µm). Please click here to view a larger version of this figure.
This protocol characterizes the clinical course, including weight loss, bacterial colonization, toxin cytotoxicity, and histopathological changes in the gastrointestinal tract, of antibiotic-treated mice challenged with C. difficile R20291 spores. There are several critical steps within the protocol where attention to detail is essential. Accurate calculation of the C. difficile spore inoculum is critical. This calculation is based on the original C. difficile spore stock enumeration, which should be consistent over multiple spore enumerations prior to starting this protocol. If the inoculum calculation is erroneous, it will result in an inaccurate inoculation dose of the mice. On the same note, preparation and dilutions of C. difficile spores based on these calculations should be prepared with care. Any dilution errors will result in an inaccurate starting spore inoculum. Lastly, precautions should be taken to avoid contamination of antibiotic-treated control mice (not inoculated with C. difficile spores). Cefoperazone-treated mice are extremely susceptible to C. difficile colonization and thus should not be in direct contact with C. difficile-infected mice28-30. If the aforementioned critical steps are recognized, successful execution of the CDI mouse model is expected.
Modification of the dose or strain of C. difficile spores administered to the mice may alter the outcomes of this model. Increasing the spore inoculum administered to mice could increase the morbidity and mortality observed, depending on the strain of C. difficile administered. A dose response experiment, evaluating a range of several inoculum doses, is recommended if using other C. difficile strains in order to characterize the clinical course of CDI.
This protocol uses TCCFA medium for C. difficile enumeration of spores and vegetative cells collectively. However, if distinct phases (such as germination and outgrowth) of the C. difficile lifecycle are desired, differential plating is required. Non-heat-treated contents, as described in this protocol, will yield the CFU per g content of spores and vegetative cells together. If the same GI content is heat-treated (20 min at 65 °C) and then plated on TCCFA media, this will yield a CFU of spores only, since C. difficile vegetative cells are destroyed by heat. Comparison of C. difficile enumeration using these two plating techniques allows for more detailed information about the C. difficile lifecycle in vivo.
One major limitation of this mouse model is that the results may not be reproducible in mice from different strains or vendors. Recall that disruption of the gut microbiota following cefoperazone treatment renders mice susceptible to CDI28. Variations in the initial composition of the gut microbiota between different murine strains from different vendors could alter the mouse model of CDI31. Once researchers have successfully completed this model, it is recommended that the mouse strain and vendor from where the mice are acquired stay consistent for additional studies to limit variations in the gut microbiota composition, which could alter the outcomes of the model.
Another limitation of the protocol is that the Vero cell cytotoxicity assay does not quantitatively measure C. difficile toxin levels in vivo. Instead, epithelial (Vero) cell cytotoxicity represents a qualitative approach that measures relative cytotoxicity of C. difficile toxins present in samples. Other techniques such as qRT-PCR and immunoblotting would be helpful to determine the amount of toxin present in the samples.
Various models of CDI are currently being used, including the Syrian hamster model, ex vivo models, and human intestinal organoid models13,14,30,32. However, the mouse model of CDI provides the increased availability of commercially-available murine reagents and assays to further examine the pathogenesis of C. difficile. Other mouse models of CDI have used different strains of C. difficile, such as VPI 10463, which results in substantial mortality and thus does not recapitulate human CDI12,17,29. In this model, C. difficile R20291 was selected for its genetic tractability and clinical relevance as a recent 027 epidemic strain33,34. Compared to other murine models of CDI, R20291 was not uniformly lethal at the dose administered, allowing for observation of a prolonged clinical course of infection concordant with human disease. Overall, this mouse model proves to be a valuable experimental platform of CDI. This fully-characterized C. difficile mouse model can be utilized to assess the effects of novel therapeutics on the amelioration of clinical disease and on the restoration of colonization resistance against C. difficile.
The authors have nothing to disclose.
The authors would like to thank Trevor Lawley at the Wellcome Trust Sanger Institute for C. difficile R20291 spores and James S. Guy at the North Carolina State University College of Veterinary Medicine for Vero cells, both utilized in this manuscript. Animal histopathology was performed in the LCCC Animal Histopathology Core Facility at the University of North Carolina at Chapel Hill, with special assistance from Traci Raley and Amanda Brown. The LCCC Animal Histopathology Core is supported in part by an NCI Center Core Support Grant (2P30CA016086-40) to the UNC Lineberger Comprehensive Cancer Center. We would also like to thank Vincent Young, Anna Seekatz, Jhansi Leslie, and Cassie Schumacher for helpful discussions on the Vero cell cytotoxicity assay protocol. JAW is funded by the Ruth L. Kirschstein National Research Service Award Research Training grant T32OD011130 by NIH. CMT is funded by the career development award in metabolomics grant K01GM109236 by the NIGMS of the NIH.
#62 Perisept Sporidicial Disinfectant Cleaner | SSS Navigator | 48027 | This product will require dilution as recommended by the manufacturer |
0.22 μm filter | Fisherbrand | 09-720-3 | Alternative to filter plate for indivdiual samples tested in the Vero Cell Assay |
0.25% Trypsin-EDTA | Gibco | 25200-056 | Needs to be heated in water bath at 37C prior to use |
0.4% Trypan Blue | Gibco | 15250-061 | |
1% Peniciilin/Streptomycin | Gibco | 15070-063 | |
10% heat inactivated FBS | Gibco | 16140-071 | Needs to be heated in water bath at 37C prior to use |
1ml plastic syringe | BD Medical Supplies | 309628 | |
1X PBS | Gibco | 10010-023 | |
2 ml Micro Centrifuge Screw Cap | Corning | 430917 | |
96 well cell culture flat bottom plate | Costar Corning | CL3595 | |
96 well filter plate | Millipore | MSGVS2210 | |
Adhesive Seal | ThermoScientific | AB-0558 | |
Bacto Agar | Becton Dickinson | 214010 | Part of TCCFA plates (see below) |
Bacto Proteose Peptone | Becton Dickinson | 211684 | Part of TCCFA plates (see below) |
Cefoperazone | MP Bioworks | 199695 | |
Cefoxitine | Sigma | C47856 | Part of TCCFA plates (see below) |
Clostridium difficile Antitoxin Kit | Tech Labs | T5000 | Used as control for Vero Cell Assay |
Clostridium difficile Toxin A | List Biological Labs | 152C | Positive control for Vero Cell Assay |
D-cycloserine | Sigma | C6880 | Part of TCCFA plates (see below) |
Distilled Water | Gibco | 15230 | |
DMEM 1X Media | Gibco | 11965-092 | Needs to be heated in water bath at 37C prior to use |
Fructose | Fisher | L95500 | Part of TCCFA plates (see below) |
Hemocytometer | Bright-Line, Sigma | Z359629 | |
KH2PO4 | Fisher | P285-500 | Part of TCCFA plates (see below) |
MgSO4 (anhydrous) | Sigma | M2643 | Part of TCCFA plates (see below) |
Millex-GS 0.22 μm filter | Millex-GS | SLGS033SS | Filter for TCCFA plates |
Na2HPO4 | Sigma | S-0876 | Part of TCCFA plates (see below) |
NaCl | Fisher | S640-3 | Part of TCCFA plates (see below) |
Number 10 disposable scalpel blade | Miltex, Inc | 4-410 | |
PCR Plates | Fisherbrand | 14230244 | |
Plastic petri dish | Kord-Valmark Brand | 2900 | |
Sterile plastic L-shaped cell spreader | Fisherbrand | 14-665-230 | |
Syringe Stepper | Dymax Corporation | T15469 | |
Taurocholate | Sigma | T4009 | Part of TCCFA plates (see below) |
Ultrapure distilled water | Invitrogen | 10977-015 | |
C57BL/6J Mice | The Jackson Laboratory | 664 | Mice should be 5-8 weeks of age |
Olympus BX43F light microscope | Olympus Life Science | ||
DP27 camera | Olympus Life Science | ||
cellSens Dimension software | Olympus Life Science |