Прижизненные флуоресцентной микроскопии (IVFM) calvarium применяется в сочетании с генетическим животных моделей для изучения самонаведения и приживления гемопоэтических клеток в костном (БМ) ниши.
Все больше фактов указывает, что это нормальное кроветворение регулируется собственный microenvironmental подсказки в БМ, которые включают специализированные сотовой ниши, модулирует критических гемопоэтических стволовых клеток (ГСК) функции1,2. Действительно более подробную картину гемопоэтических микроокружения теперь формируется, в котором endosteal и эндотелиальных ниши образуют функциональные единицы для регулирования обычных HSC и их потомства3,4,5 . Новые исследования показали важность периваскулярной клеток, адипоциты и нейрональные клетки в сохранении и регулировании HSC функции6,,78. Кроме того есть свидетельства того, что клетки от различных линий, т.е. миелоидного и лимфоидных клеток, дома и проживают в конкретных нишах в BM микроокружения. Однако полное картирование BM микроокружения и его обитатели все еще продолжается.
Трансгенные мыши штаммов, выражая линии конкретных флуоресцентные маркеры или мышей, генетически не хватает отдельных молекул в определенные ячейки BM нишу теперь доступны. Нокаут- и линии отслеживания модели, в сочетании с подходами, трансплантация, предоставляют возможность уточнить знания о роли конкретных «нишу» клетки для определенных гемопоэтических населения, например HSC, B-клетки, Т-клетки, миелоидных клеток и эритроидных клеток. Эта стратегия может быть далее потенцированные путем слияния использование двух Фотон микроскопии calvarium. Предоставляя в vivo изображений высокого разрешения и 3-D визуализации BM calvarium, мы теперь местоположение можно определить точно где конкретных подмножеств гемопоэтических дома в BM и оценить кинетику их расширения с течением времени. Здесь Lys-GFP трансгенных мышей (маркировка миелоидных клеток)9 и RBPJ нокаут-мышей (без канонических Notch сигнализации)10 используются в сочетании с IVFM для определения приживления миелоидных клеток к вырезка дефектных BM микроокружения.
Прижизненные multiphoton флуоресцентной микроскопии (IVFM) – это мощный изображений метод, который позволяет с высоким разрешением в реальном времени визуализации тканей с глубиной до 1 мм, в зависимости от ткани. При применении к calvarium мыши, позволяет наблюдения за поведением гемопоэтических клеток в BM неинвазивным способом до 60-100 мкм11. Этот подход используется здесь для определения кинетика приживления нормальной миелоидного прародителями мышей нокаут-БМ RBPJ, не хватает канонические Notch сигнализации.
Последние работы из нашей группы продемонстрировали, что дефектных канонические Notch сигнализации в BM микроокружения приводит к болезни миелопролиферативных как12. Потеря Notch сигнализации был получен условного удаления ДНК привязки домена RBPJ, критических транскрипционный фактор, вниз по течению канонических выемки, сигнализации, используя Mx1-Cre индуцированной рекомбинации10. В этом исследовании была использована модель мышиаргона/lox Mx1-Cre/RBPJ. Условного удаления ДНК связывающих мотив RBPJ приводит к потере сигнализации от всех Notch рецепторов. В модели Mx1-Cre, КРР, выражение управляется промоутер Mx1, активируется после отправления polyI:C, что приводит к индукции удаления целевых генов в клетки крови, а также стромальные компонентов нескольких органов, в том числе BM, селезенки и печени.
Mx1-Cre+/RBPJжидкий кислород/lox и мышейаргона/lox Mx1-Cre–/RBPJ индуцированных с polyI:C (расписка указано как RBPJKO и RBPJWT, соответственно) были смертельно облученных и пересадить с нормальной, дикого типа гемопоэтических клеток. Начиная с 4 недели после пересадки, RBPJKO получателей разработали значительное лейкоцитоза, следуют спленомегалия. Хотя RBPJKO мышей представил увеличение доли миелоидного прародителями БМ на неделе 8 после пересадки и позднее момента времени, анализ БМ на 4 и 6 недель не выявить различия в их содержание миелоидных клеток, по сравнению с контролем RBPJWT получателей. Это наблюдение, а также тот факт, что Mx1-Cre выражается в различных кроветворных органов, возникает вопрос, ли BM микроокружения имел непосредственное влияние на возбуждение миелопролиферативных фенотип.
Чтобы определить, является ли BM критическим местом первоначального развития болезни, IVFM мыши calvarium был использован в сочетании с BM трансплантации (БМТ), нокаут-модель RBPJ и линии, системы слежения. Трансгенных мышей, выражая EGFP под контролем конкретных лизоцима промоутер (Lys-GFP)9 были использованы для получения клеток донора, которые могут быть визуализированы в BM изображений после ТКМ. Лизоцим выражение для миелоидных клеток и Lys-GFP знаменует клетки от общей миелоидного progenitor (CMP) до зрелых гранулоцитов13.
IVFM BM в разное время точках продемонстрировали, что Lys-GFP клетки указаны аналогичным получателям БМ RBPJWT и RBPJKO, но расширена и быстрее прижившимися, в БМ RBPJKO получателей. Эта разница была резко на предшествующий момент времени (2 недели) и со временем (недели 4 и 6). Однако в этих более поздних точках времени, оценки гемопоэтических отсека в же получателю показал устойчивый рост числа миелоидных клеток, циркулирующих в PB и локализованы в селезенке RBPJKO мышей, показывающее увеличение производства клеток от БМ в кровоток. Анализ Lys-GFP клетки локализации в BM пересаженных мышей на 6 недель показали, что миелоидных клеток проживало дальше сосудистую в RBPJKO микроокружения чем в элементе управления.
Коллективно сочетание IVFM с этих конкретных животных моделей позволило получить информацию в динамике приживления миелоидных клеток в RBPJKO BM микроокружения. Экспериментальный дизайн и количественный подход, описанный здесь предлагается в качестве парадигмы, которые могут применяться для решения подобных вопросов. Например, может разрешить использование других клеток конкретных линии отслеживания модели, такие как RAG1-GFP14 или15 мышей Gata1-GFP, после поведение лимфоидной или эритроидные предшественники, соответственно, в BM.
Этот протокол описывает экспериментальный дизайн, оптимизированный для изучения кинетики приживления гемопоэтических клеток с флуоресцентными прижизненной микроскопии. В этом исследовании расширение клеток миелоидного progenitor в WT BM или в зазубрине сигнализации дефектных BM был отсле?…
The authors have nothing to disclose.
Визуализация была проведена в центре Индиана для биологических микроскопии в университете Индианы, режиссер доктор Кен Dunn. Стереотаксическая устройство является прототипом разработана и изготовлена, Марк Soonpaa, центр Уэллс педиатрических исследований. Эта работа была поддержана NIH/R01DK097837-09 (NC), NIH/R01HL068256-05 (NC), NIH/NIDDK1U54DK106846-01 (Размыкающих), MPN исследовательский фонд (NC) и CTSI совместных проектов IUSM/Нотр Дам (NC).
Ketamine cocktail | IU School of Medicine | Ketamine 90-100mg/kg, Xylazine 2.5-5.0 mg/kg, Acepromazine 1.0-2.5 mg/kg | |
TRITC dextran | Tdb Consultancy | TD150-100mg | Other color dextran may be used. |
Andis hair trimmer | Braintree Scientific | CLP-323 75 | |
Gauze sponge | Med Vet International | PK224 | 4-ply, 2X2 |
Nair depilatory cream | Commercial store | ||
Saline | Med Vet International | RXSAL-POD1LT | 0.9% Sodium Chloride poly bottle |
Insulin syringe | Fisher Scientific | 14-826-79 | 28g, 1/2cc |
Fine Forceps | Fine Science Tools | 00108-11, 00109-11 | straight forcep, angled forcep |
Scissor | Fine Science Tools | 15018-10 | |
Needle holder | Fine Science Tools | 12002-14 | |
5-0 silk suture | Fisher Scientific | MV-682 | Other non-absorbable suture may be used |
WillCo- glass bottom dish | WillCo | GWSt-5040 | |
Optical microscope oil | Leica | ||
Stereotaxic stage insert | IU School of Medicine | Custom design | |
Olympus FV1000 confocal microscope system | Olympus | ||
Olympus XLUMPLFL 20xW, NA 0.95 objective | Olympus | ||
Small heating pad | Commercial store | Zoo Med reptile heating pad | |
Imaris 8.1 imaging software | Bitplane | 3/4 D Image Visualization and Analysis software |