本文介绍用于模拟和视觉系统学习适应的新方法。
许多技术已经发展到可视化图像是如何出现的个体有不同的视觉灵敏度: 例如 ,由于光学或年龄的差异,或颜色缺陷或疾病。这个协议描述了用于掺入感觉适应成模拟的技术。该协议被示为具有色觉的例子,但是一般适用于任何形式的视觉适应的。该协议使用基于关于视网膜和皮质机制编码的颜色以及如何将这些调整其灵敏度在当时的刺激的平均颜色和范围的颜色的标准和可信的假设人类颜色视觉的一个简单的模型。该机制的增益调整,使得下一个上下文他们的平均响应等同于不同的环境。仿真有助于揭示适应的理论极限,并产生“改编的图像”被最佳匹配到一个特定的ENVIRO市民明白或观察员。他们还探索适应不同的观察者或不同环境中的作用提供了一个通用指标。表征视觉感知和性能,这些图像为研究视觉或其他感觉系统长期适应的功能和后果的新颖工具。
可能世界是什么样子给他人,或者以自己为我们改变?这些问题的答案是理解的性质和感知的机制和感官编码正常和临床情况的后果至关重要的。各种各样的技术和方法已被开发用于模拟图像可能会出现以不同的视觉敏感度的个体。例如,这些包括可以由不同类型的颜色缺陷的被辨别颜色的模拟1,2,3,4,空间和彩色差异可以由婴儿或较旧的观察员5,6,7,8来解决,9 ,图像如何出现在周边视野<s向上类= “外部参照”> 10,和光学误差或疾病11,12,13,14的后果。他们也被应用到可视化是可能的其他物种的15,16,17歧视。通常情况下,这种模拟的使用在不同人群中的灵敏度损耗测量滤波器的图像,从而减少或消除它们难以看到的结构。例如,色盲的常见形式反映两个感光体为中等或长波长敏感的一个的损失,并过滤以除去它们的信号图像通常出现缺乏“红绿”的色调1。同样,婴儿具有更差的敏度,从而为他们的降低的空间灵敏度处理的图像出现模糊 。F“> 5这些技术提供了什么样一个人可以看到另一种可能不会宝贵的插图然而,他们不这样做-而且往往不打算-描绘观察者的实际感性经验,而且在某些情况下可能误传数量和类型的信息提供给观察者。
本文介绍用于模拟在视觉体验其中结合了视觉编码的基本特性差异的新颖技术-适配18,19。所有的感觉和运动系统不断调整,以它们暴露于环境。在一个房间里有刺激性气味很快消失,而视觉适应的房间怎么亮或变暗。重要的是,出现了几乎任何刺激属性这些调整,包括“高层次”的看法,例如某人的脸20的特点,类=“外部参照”> 21或它们的话音22,23,以及校准移动眼睛或达到的对象24,25时进行的马达的命令。事实上,改编很可能几乎所有的神经处理的重要属性。本文示出了如何将这些适应影响到图像的外观的仿真中,通过基本上“适应图像”来预测它会出现一个特定的适应观察者26,27,28,29的特定状态下。许多因素可以改变观察者的灵敏度,但往往适应可以补偿这些变化的重要方面,因此,灵敏度损失比没有假定系统适应被预测不那么显眼。相反,因为适应根据目前的刺激情境调节感光度,这些调整也纳入预测如何当环境变化很大的看法可能会有所不同很重要。
以下方案示出了通过调整图像的颜色内容的技术。色觉有颜色编码的初始阶段,神经都比较容易理解的优势,是适应30的图案。实际机制和调整是复杂的,多种多样,但适应的主要后果可以使用简单的和常规的两阶段模型( 图1a)被捕获。在第一阶段中,彩色信号最初由三种类型的视锥光那些对短期,中期或长波长(S,M和L视锥细胞)最大限度敏感的编码。在第二阶段中,从不同的视锥细胞的信号被后receptoral细胞内结合,以形成“颜色对手”茶从不同锥体接收拮抗输入nnels(因此传达“颜色”的信息),并且加在一起的锥体输入“非对手”通道(因此编码“明亮度”的信息)。适应发生在两个阶段中,并且调整到颜色的两个不同方面-的平均值(在锥体)和方差(在-receptoral后通道)30,31。模拟的目标是将这些调整从其改编的输出应用到模型的机制,然后呈现图像。
适应图像的过程包括六个主要部件。这些1)选择图像; 2)选择用于图像光谱的格式; 3),其限定在环境中的颜色变化; 4)限定的观测器的灵敏度的变化; 5使用该程序来创建适于图像); 6)利用图像来评价适应的后果。 Ť他认为以下各步骤加以详细说明。的基本模式和机构响应在图1中示出,而图2 – 5图像的实例与模型渲染。
示出的协议演示如何适应于环境或观察者的变化的影响可以在图像被描绘。这写照需要将取决于模型所做的假设的形式 – 例如,颜色是如何编码,以及如何编码机制,应对和适应。因此,最重要的一步是决定模型上的色觉 – 比如哪些虚拟通道的特性,他们认为如何适应。另一个重要的步骤是设定合适的参数为两个环境,或两个观察员敏感的特性,您之间调整。
说明该模型非?…
The authors have nothing to disclose.
由卫生部(NIH)资助EY-10834的美国国家研究院资助。
Computer |
Images to adapt |
Programming language (e.g. Visual Basic or Matlab) |
Program for processing the images |
Observer spectral sensitivities (for applications involving observer-specific adaptation) |
Device emmission spectra (for device-dependent applications) |