Özet

使用纳米脂质载体癌症治疗剂,达卡巴嗪封装

Published: April 26, 2016
doi:

Özet

对于纳米结构的脂质载体(NLC)的合成中最常用的方法包括油包水乳化,均质和凝固。这是由凝固后施加高剪切分散,实现与希望的尺寸,提高了药物包封和药物负载效率为达卡巴嗪传递一个潜在的载体NLC在这里进行修改。

Abstract

在临床使用达卡巴嗪(DAC)的唯一配方是静脉内输注,呈现较差治疗特性由于在水溶液中药物的低分散度。为了克服这个,包括棕榈酸甘油酯和异丙基肉豆蔻酸酯的纳米结构的脂质载体(NLC)的开发,以封装DAC。具有受控尺寸联络委员会采用以下油包水乳状液的凝固的高剪切分散(HSD)来实现的。合成参数,包括表面活性剂浓度,速度和HSD的时间进行了优化,以实现与尺寸,多分散指数为155±10nm的ζ电位最小NLC,0.2±0.01,和-43.4±2毫伏,分别。最佳工艺参数也用于DAC加载NLC的准备。装有DAC所得NLC分别具有尺寸,多分散指数为190±10nm的ζ电位,0.2±0.01,和-43.5±1.2毫伏。该药物包封EFFICIENCY和载药量分别达到98%和14%。这是使用NLC的DAC封装的第一份报告,这意味着NLC可能是一个新的潜在的候选者作为药物载体,以提高DAC的治疗特性。

Introduction

达卡巴嗪(DAC)是施加通过核酸甲基化或直接DNA损伤的抗肿瘤活性,从 ​​而导致细胞周期停滞和细胞死亡1烷化剂。

作为第一线化疗剂,DAC已单独或与其它化疗药物用于治疗各种癌症2-6组合使用。它是用于治疗皮肤和转移性黑色素瘤,这是皮肤癌3,7,8的最积极的形式迄今使用的最活性剂。的响应速度,但是,只有20%在最好的,并且治疗效果往往伴随着严重的全身性副作用。

在其天然形式中,DAC是亲水性的并且是不稳定的,由于其光敏性9。临床使用的唯一可用的式目前是在悬浮液用于静脉内输注7,8所用的无菌粉末。低响应速度和高的全身毒性ř吃的药物,主要是由于其水溶性较差,因此低可用性目标在现场,和高配的非靶部位,从而限制了药物10的最大剂量。静脉入院耐药性的发展一起后快速降解和代谢限制临床应用和药物11的治疗效果。因此,迫切需要开发替代DAC制剂用于治疗恶性黑色素瘤。

含有脂质体的胶体体系,胶束或纳米颗粒已经集中研究了其在药物递送中使用如由Marilene 等人 12纳米粒子作为潜在药物载体已被吸引在过去十年中越来越多的关注,因为它们增加载药量的能力审查效率,控制药物释放,提高药物的药代动力学和生物分布,并由此计算的r-得出药全身毒性13。只有少数nanoformulations然而,迄今已对DAC递送研究,表示从相片变性药,增加药物溶解度的保护,以及改进的治疗效果10,14,15。然而,这些制剂有些还使用的是不符合成本效益的合成聚合物的纳米颗粒封装低效率受到影响。

纳米结构的脂质载体(NLC)由固体和液体脂质的混合物,已经开发了用于药物递送16,17。待包封的药物通常可溶于所述液体脂质和固体脂质相18,导致高的负荷和控制释放19。本研究旨在开发基于使用棕榈酸甘油酯和肉豆蔻酸异丙酯脂类NLC封装一个新的DAC配方。制备涉及油包水乳液,蒸发,凝固,和homogenizatioñ。该制剂已被表征为NLC尺寸,形状,超微结构,和分散度,药物包封率和药物负载20。

Protocol

1.油包水乳液的制备称重硬脂酸棕榈酸甘油酯(120毫克),肉豆蔻酸异丙酯(60毫克)中,d-α生育酚聚乙二醇琥珀酸酯(30毫克)和大豆卵磷脂(30毫克),并把它们添加到12.5毫升有机溶剂(6.25毫升丙酮和6.25毫升乙醇)。在该温度70℃(5℃固体脂质的熔点以上)的水浴迅速溶解该混合物。 添加任一125,250或375毫克泊洛沙姆188的在12.5 DDH 2 O的毫升实现泊洛沙姆188溶液,这是?…

Representative Results

国家图书馆和国家图书馆-DAC采用棕榈酸甘油酯和肉豆蔻酸异丙酯使用不同的参数的筹备工作特点是PS,PDI,形态和超微结构20。各国联络委员会的PS和PDI分别为表面活性剂浓度,HSD速度和持续时间有关。作为判断PS和联络委员会的PDI,最好的结果是用表面活性剂的1%和15,000rpm的30分钟( 图1A,B和C)一种纯粹的分散速度,因此这…

Discussion

基于脂质的纳米颗粒已被用于递送疏水性药物提供高度亲脂性载体。一个NLC是第二代固体脂质纳米结构载体,其在室温和体温固体。固体脂质掺入在NLC结果的液体脂质中一个不太完美结晶,从而增加了药物装载效率和也减少储存期间包封药物的驱逐。

为NLC合成中,最常用的方法包括油包水乳化,均质和固化/结晶21,22。均质化可以联络委员会到在水相中完全分散,同时…

Açıklamalar

The authors have nothing to disclose.

Acknowledgements

作者承认为使研究成为可能沙特资助的奖学金(I821)。作者感谢显威刘博士在克兰菲尔德大学的TEM分析专家的支持。

Materials

Dacarbazine (DAC) Sigma Aldrich (Gillingham Dorset, UK) D2390-100MG drug used for uploading
glyceryl palmitostearate  Gattefossé (Saint_Priest_cédex, France) 85251-77-0 solid lipid 
d-α- Tocopherol polyethylene glycol succinate (TPGS) Sigma Aldrich (Gillingham Dorset, UK) 57668 lipid phase surfactant
Poloxamer 188 Sigma Aldrich (Gillingham Dorset, UK) 15759-1KG liqiud phase surfactant
Acetone  Sigma Aldrich (Gillingham Dorset, UK) 650501-1L organic solvent
Ethanol  Sigma Aldrich (Gillingham Dorset, UK) 459836-1L organic solvent
Soybean lecithin (SL) Cuisine Innovation (Dijon, France) SLL1402 lipid phase surfactant
Double-distilled water was collected in our laboratory from Millipore-Q Gradient A10 ultra-pure water system (Millipore, France) SAS – 67120  aqueous phase 
T 25 digital ULTRA-TURRAX IKA 3725000 as high shear disperser
Hotplate Magnetic Stirrer Scientific Support, Inc 1454  emulsion homogenization

Referanslar

  1. Loo, T. L., Housholder, G. E., Gerulath, A. H., Saunders, P. H., Farquhar, D. Mechanism of action and pharmacology studies with DTIC (NSC 45388). Cancer Treat Rep. 60 (2), 149-152 (1976).
  2. Behringer, K., et al. Omission of dacarbazine or bleomycin, or both, from the ABVD regimen in treatment of early-stage favourable Hodgkin’s lymphoma (GHSG HD13): An open-label, randomised, non-inferiority trial. The Lancet. 385 (9976), 1418-1427 (2014).
  3. Carvajal, R. D., et al. A phase 2 randomised study of ramucirumab (IMC-1121B) with or without dacarbazine in patients with metastatic melanoma. Eur J Cancer. 50 (12), 2099-2107 (2014).
  4. Jiang, G., Li, R., Sun, C., Liu, Y., Zheng, J. Dacarbazine combined targeted therapy versus dacarbazine alone in patients with malignant melanoma: A meta-analysis. PLoS ONE. 9 (12), (2014).
  5. Lazar, V., et al. Sorafenib plus dacarbazine in solid tumors: A phase i study with dynamic contrast-enhanced ultrasonography and genomic analysis of sequential tumor biopsy samples. Invest New Drugs. 32 (2), 312-322 (2014).
  6. Niemeijer, N. D., Alblas, G., Van Hulsteijn, L. T., Dekkers, O. M., Corssmit, E. P. M. Chemotherapy with cyclophosphamide, vincristine and dacarbazine for malignant paraganglioma and pheochromocytoma: Systematic review and meta-analysis. Clin Endocrinol (Oxf). 81 (5), 642-651 (2014).
  7. Bedikian, A. Y., Garbe, C., Conry, R., Lebbe, C., Grob, J. J. Dacarbazine with or without oblimersen (a Bcl-2 antisense oligonucleotide) in chemotherapy-naive patients with advanced melanoma and low-normal serum lactate dehydrogenase: ‘The AGENDA trial’. Melanoma Res. 24 (3), 237-243 (2014).
  8. Daponte, A., et al. Phase III randomized study of fotemustine and dacarbazine versus dacarbazine with or without interferon-a in advanced malignant melanoma. J Trans Med. 11 (1), (2013).
  9. Jiao, J., Rhodes, D. G., Burgess, D. J. Multiple Emulsion Stability: Pressure Balance and Interfacial Film Strength. J Colloid Interface Sci. 250 (2), 444-450 (2002).
  10. Kakumanu, S., Tagne, J. B., Wilson, T. A., Nicolosi, R. J. A nanoemulsion formulation of dacarbazine reduces tumor size in a xenograft mouse epidermoid carcinoma model compared to dacarbazine suspension. Nanomedicine. 7 (3), 277-283 (2011).
  11. Xie, T., Nguyen, T., Hupe, M., Wei, M. L. Multidrug resistance decreases with mutations of melanosomal regulatory genes. Cancer Res. 69 (3), 992-999 (2009).
  12. Estanqueiro, M., Amaral, M. H., Conceição, J., Lobo, J. M. S. Nanotechnological carriers for cancer chemotherapy: the state of the art. Colloids Surf., B. 126, 631-648 (2015).
  13. Koziara, J. M., Whisman, T. R., Tseng, M. T., Mumper, R. J. In-vivo efficacy of novel paclitaxel nanoparticles in paclitaxel-resistant human colorectal tumors. J Controlled Release. 112 (3), 312-319 (2006).
  14. Ding, B., et al. Biodegradable methoxy poly (ethylene glycol)-poly (lactide) nanoparticles for controlled delivery of dacarbazine: Preparation, characterization and anticancer activity evaluation. Afr J Pharm Pharacol. 5 (11), 1369-1377 (2011).
  15. Ding, B., et al. Anti-DR5 monoclonal antibody-mediated DTIC-loaded nanoparticles combining chemotherapy and immunotherapy for malignant melanoma: target formulation development and in vitro anticancer activity. Int J Nanomedicine. 6, 1991-2005 (2011).
  16. Jenning, V., Thünemann, A. F., Gohla, S. H. Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids. Int J Pharm. 199 (2), 167-177 (2000).
  17. Müller, R. H., Radtke, M., Wissing, S. A. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm. 242 (1-2), 121-128 (2002).
  18. Pouton, C. W. Lipid formulations for oral administration of drugs: Non-emulsifying, self-emulsifying and ‘self-microemulsifying’ drug delivery systems. Eur. J. Pharm. Sci. 11 (Suppl. 2), S93-S98 (2000).
  19. Jores, K., Mehnert, W., Drechsler, M., Bunjes, H., Johann, C., Mäder, K. Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy. J Controlled Release. 95 (2), 217-227 (2004).
  20. Almousallam, M., Zhu, H. Encapsulation of cancer therapeutic agent dacarbazine using nanostructured lipid carrier. Int nano lett. , (2015).
  21. Ng, W. K., et al. Thymoquinone-loaded nanostructured lipid carrier exhibited cytotoxicity towards breast cancer cell lines (MDA-MB-231 and MCF-7) and cervical cancer cell lines (HeLa and SiHa). BioMed Research International. , (2015).
  22. Sun, M., et al. Quercetin-nanostructured lipid carriers: Characteristics and anti-breast cancer activities in vitro. Colloids Surf., B. 113, 15-24 (2014).
  23. Savla, R., Garbuzenko, O. B., Chen, S., Rodriguez-Rodriguez, L., Minko, T. Tumor-Targeted Responsive Nanoparticle-Based Systems for Magnetic Resonance Imaging and Therapy. Pharm Res. 31 (12), 3487-3502 (2014).
  24. Chen, Y., et al. Formulation, characterization, and evaluation of in vitro skin permeation and in vivo pharmacodynamics of surface-charged tripterine-loaded nanostructured lipid carriers. Int J Nanomedicine. 7, 3023 (2012).
  25. Sanna, V., Caria, G., Mariani, A. Effect of lipid nanoparticles containing fatty alcohols having different chain length on the ex vivo skin permeability of Econazole nitrate. Powder Technol. 201 (1), 32-36 (2010).
  26. Brigger, I., Dubernet, C., Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 54 (5), 631-651 (2002).
  27. Visaria, R. K., et al. Enhancement of tumor thermal therapy using gold nanoparticle-assisted tumor necrosis factor-a delivery. Mol Cancer Ther. 5 (4), 1014-1020 (2006).
  28. Tripathi, A., Gupta, R., Saraf, S. A. PLGA nanoparticles of anti tubercular drug: Drug loading and release studies of a water in-soluble drug. Int J PharmTech Res. 2 (3), 2116-2123 (2010).
  29. Joshi, M., Patravale, V. Nanostructured lipid carrier (NLC) based gel of celecoxib. Int J Pharm. 346 (1-2), 124-132 (2008).
  30. Lim, W. M., Rajinikanth, P. S., Mallikarjun, C., Kang, Y. B. Formulation and delivery of itraconazole to the brain using a nanolipid carrier system. Int J Nanomedicine. 9 (1), 2117-2126 (2014).
  31. Bei, D., Zhang, T., Murowchick, J. B., Youan, B. C. Formulation of dacarbazine-loaded cubosomes. Part III. physicochemical characterization. AAPS PharmSciTech. 11 (3), 1243-1249 (2010).
  32. Lei, M., et al. Dual drug encapsulation in a novel nano-vesicular carrier for the treatment of cutaneous melanoma: Characterization and in vitro/in vivo evaluation. RSC Advances. 5 (26), (2015).

Play Video

Bu Makaleden Alıntı Yapın
Almoussalam, M., Zhu, H. Encapsulation of Cancer Therapeutic Agent Dacarbazine Using Nanostructured Lipid Carrier. J. Vis. Exp. (110), e53760, doi:10.3791/53760 (2016).

View Video