Özet

性别差异在小鼠海马星形胶质细胞<em>在体外</em>缺血

Published: October 25, 2016
doi:

Özet

星形胶质细胞是中枢神经系统(CNS)最重要的关键球员之一。在这里,我们报告,以研究男性和女性新生儿幼崽的星形胶质细胞功能的体外缺血后背后的机制性控海马星形胶质细胞培养协议的实用方法。

Abstract

星形胶质细胞增生缺氧/缺血(HI)相关的脑损伤起着新生儿增加发病率和死亡率的作用。最近的临床研究表明,大脑损伤的严重程度似乎是性别依赖性的,并且该男性新生儿是HI有关的脑损伤的影响更加敏感,导致更严重的神经系统的结果相比,女性具有可比的脑损伤。可靠的方法来隔离和维护绝育手术海马星形胶质细胞的高度浓缩的人口的发展是至关重要的了解新生儿HI的病理后果的性别差异细胞基础。在这项研究中,我们描述了创建经受体外缺血,缺氧缺糖模型,随后复氧性具体海马星形细胞培养的方法。随后的反应性星形胶质被immunostai检查宁为胶质纤维酸性蛋白(GFAP)和S100B。这种方法提供了一个有用的工具来研究男性和女性的海马星形胶质细胞的新生之后HI的作用,分别。

Introduction

星形胶质细胞是中枢神经系统(CNS)最重要的关键球员之一。越来越多的证据表明,星形胶质细胞的作用是比提供支持神经元多。事实上,在生理条件下的星形胶质细胞的作用可以是非常复杂的,如引导显影轴突1的迁移,调节CNS血流2中,并保持突触组织液3的pH稳态,和参与血脑屏障4和突触传递5。在病理条件下,星形细胞损伤响应与被叫其中形态,数量,位置,地形(相对于从损伤的距离)的星形胶质细胞和功能可在异构方式6,7-改变反应性星形胶质细胞增生的过程。看到下面的星形胶质细胞增生新生儿缺氧缺血性脑病,也许有利于新生儿的发病率和死亡率<s达> 8。

最近的临床和实验研究表明,大脑损伤的严重程度似乎是性别依赖性和,作为相对于男性新生儿对缺氧/缺血(HI)相关的脑损伤的影响更加敏感,导致更严重的神经成果女性具有可比性脑损伤9-11。虽然损伤的定位取决于胎龄和持续时间和损伤的严重程度,海马是足月HI后在CNS中最常见的影响区域中的一个,并增加海马星形胶质细胞增生被上调的确认胶质纤维酸性蛋白(GFAP)新生儿HI 7,10,12,13后3天。星形胶质细胞功能的性别差异被证明在这两个新生儿和成人啮齿动物脑缺血后14,15。另外,男性星形细胞易感性的体外缺血通过增加CEL所示升死亡相比,在文化16女性皮层星形胶质细胞。

性别差异在子宫内开始并持续直至死亡17。在过去十年中,包括在细胞培养和体内研究,在实验条件下男女的重要性一直医学和NIH研究所的重点寻求基础知识,在生理和病理条件17,18见过的性别差异。可靠的方法开发分离和维护绝育手术海马星形胶质细胞的人口有必要了解的新生儿HI的病理后果的性别差异的细胞学基础。本研究的目的是提供的技术准备,以评估以下氧气/葡萄糖剥夺(OGD)和复氧(再氧化),诱导GFAP免疫反应阳性星形胶质细胞的作用,从新生小鼠丰富的性别特异性海马星形胶质细胞培养HI在细胞培养环境。这种技术可以用来测试有关含氧量正常和缺血性的条件下在新生儿男性和女性海马星形胶质细胞的任何假设。

Protocol

注:此研究是按照指南的护理的美国国立卫生研究院的实验动物的建议,并进行使用。动物方案经威斯康星大学麦迪逊分校,机构动物护理和使用委员会的大学。即这里提出初级星形胶质细胞培养协议从由张ý19 等和Cengiz第20页等人提出的协议通过。有一些修改。 1.海马解剖和星形胶质细胞文化准备所有必需的试剂和材料,包括在冰上手术剪,光?…

Representative Results

理解的生理或病理生理条件下性控星形细胞机能的作用已经通过体外的条件下培养这些细胞被极大地阐明。执行性控培养的重要方面是确定鼠标小狗的性别其使用前。我们的基因通过PCR和通过视觉评价( 图2)16所确定的小鼠的性别。采用PCR性别鉴定的方法与McClive和辛克莱修改获得通过,快速,简便和高重现性的方法23。 图2A</stron…

Discussion

为了研究生理和病理条件下,在属性的性别差异和功能星形胶质细胞,在细胞培养物中制备性控初级星形胶质细胞是利用一个重要工具。在本研究中,我们报道了高效和可再现的方法来培养新生性控海马星形胶质细胞的高度富集的同质群体(P0-P2)的C57BL / 6(野生型)或K19F(GFAP空)小鼠幼仔体外 。建立这种方法可以帮助研究者了解性控海马星形胶质细胞的生理和病理功能体外缺血?…

Açıklamalar

The authors have nothing to disclose.

Acknowledgements

Clinical and Translational Science Award program of NCATS UL1 TR0000427 and KL2 TR000428 (Cengiz P), UL1TR000427 to the UW ICTR from NIH/NCATS and funds from Waisman Center (Cengiz P), K08 NS088563-01A1 from NINDS (Cengiz P) and NIH P30 HD03352 (Waisman Center), NIH/NINDS 1K08NS078113 (Ferrazzano P). We would like to thank Albee Messing, PhD, for providing us the GFAP knockout mice.

Materials

Astrocyte culture media
DMEM, high glucose cellgro 10-013-CV
Horse serum Gibco 26050-070 Final Concentration: 10%
Penicillin-Streptomycin Cellgro  30-002-CI Final Concentration: 1%
L-Leucine methyl ester hydrochloride Aldrich L1002-25G Final Concentration: 5 mM
Solution for brain tissue digestion
HBSS Life Technologies 14170-088
0.25% Trypsin cellgro 25-050-CI Final Concentration: 0.25%
Diğer
70% (vol/vol) ethanol Roth 9065.2
Poly-D-Lysine 12mm round coverslips  Corning 354087
Water Sigma W3500 cell culture grade
PBS cellgro 21-040-CV cell culture grade
0.05% Trypsin-EDTA  Life Technologies 25300-062
70 μm Sterile cell strainer  Fisher scientific 22363548
3.5 cm petri dish BD Falcon 353001
15 ml Falcon tube BD Falcon 352096
50 ml Falcon tube BD Falcon 352070
Forceps, fine  Dumont 2-1032; 2-1033 # 3c; # 5
Forceps, flat tip KLS Martin 12-120-11
13 cm surgical scissors Aesculap BC-140-R
Confocal Microscope Nikon A1RSi 
Centrifuge Eppendorf 5805000.017 Centrifuge5804R
Orbital Shaker Thermo Scientific SHKE 4450-1CE MaxQ 4450 
Anti-IBA1 Wako 019-19741 Rabbit monoclonal
Anti-MAP2 Sigma M2320 Mouse monoclonal
Anti-HIF1alpha abcam ab179483 rabbit monoclonal
Anti-S100B Sigma HPA015768 Rabbit polyclonal
Anti-GFAP (cocktail) Biolegend 837602
VECTASTAIN Elite ABC Kit (Rabbit IgG) Vector Labs PK-6101 Contains 4 Reagents 
Goat Anti Rabbit Alexa-Fluor 488 Invitrogen A11070
Goat Anti Mouse Alexa-Fluor 568 Invitrogen A11004

Referanslar

  1. Powell, E. M., Geller, H. M. Dissection of astrocyte-mediated cues in neuronal guidance and process extension. Glia. 26, 73-83 (1999).
  2. Koehler, R. C., Roman, R. J., Harder, D. R. Astrocytes and the regulation of cerebral blood flow. Trends in neurosciences. 32, 160-169 (2009).
  3. Seifert, G., Schilling, K., Steinhauser, C. Astrocyte dysfunction in neurological disorders: a molecular perspective. Nature reviews. Neuroscience. 7, 194-206 (2006).
  4. Ballabh, P., Braun, A., Nedergaard, M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Hastalık nörobiyolojisi. 16, 1-13 (2004).
  5. Araque, A., Parpura, V., Sanzgiri, R. P., Haydon, P. G. Tripartite synapses: glia, the unacknowledged partner. Trends in neurosciences. 22, 208-215 (1999).
  6. Anderson, M. A., Ao, Y., Sofroniew, M. V. Heterogeneity of reactive astrocytes. Neuroscience letters. 565, 23-29 (2014).
  7. Cengiz, P., et al. Inhibition of Na+/H+ exchanger isoform 1 is neuroprotective in neonatal hypoxic ischemic brain injury. Antioxidants & redox signaling. 14, 1803-1813 (2011).
  8. Ferriero, D. M. Neonatal brain injury. The New England journal of medicine. 351, 1985-1995 (2004).
  9. Hill, C. A., Fitch, R. H. Sex differences in mechanisms and outcome of neonatal hypoxia-ischemia in rodent models: implications for sex-specific neuroprotection in clinical neonatal practice. Neurol Res Int. , 1-9 (2012).
  10. Cikla, U., et al. ERalpha Signaling Is Required for TrkB-Mediated Hippocampal Neuroprotection in Female Neonatal Mice after Hypoxic Ischemic Encephalopathy(1,2,3). eNeuro. 3, (2016).
  11. Uluc, K., et al. TrkB receptor agonist 7, 8 dihydroxyflavone triggers profound gender- dependent neuroprotection in mice after perinatal hypoxia and ischemia. CNS Neurol Disord Drug Targets. 12, 360-370 (2013).
  12. Cikla, U., et al. Suppression of microglia activation after hypoxia-ischemia results in age-dependent improvements in neurologic injury. J Neuroimmunol. 291, 18-27 (2016).
  13. McQuillen, P. S., Ferriero, D. M. Selective vulnerability in the developing central nervous system. Pediatr Neurol. 30, 227-235 (2004).
  14. Morken, T. S., et al. Altered astrocyte-neuronal interactions after hypoxia-ischemia in the neonatal brain in female and male rats. Stroke; a journal of cerebral circulation. 45, 2777-2785 (2014).
  15. Chisholm, N. C., Sohrabji, F. Astrocytic response to cerebral ischemia is influenced by sex differences and impaired by aging. Hastalık nörobiyolojisi. 85, 245-253 (2016).
  16. Liu, M., Oyarzabal, E. A., Yang, R., Murphy, S. J., Hurn, P. D. A novel method for assessing sex-specific and genotype-specific response to injury in astrocyte culture. Journal of neuroscience methods. 171, 214-217 (2008).
  17. . Exploring the biological contributions to human health: does sex matter?. Journal of women’s health & gender-based. 10, 433-439 (2001).
  18. Collins, F. S., Tabak, L. A. Policy: NIH plans to enhance reproducibility. Nature. 505, 612-613 (2014).
  19. Zhang, Y., et al. Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron. 78, 785-798 (2013).
  20. Cengiz, P., et al. Sustained Na+/H+ exchanger activation promotes gliotransmitter release from reactive hippocampal astrocytes following oxygen-glucose deprivation. PloS one. 9, e84294 (2014).
  21. Landis, S. C., et al. A call for transparent reporting to optimize the predictive value of preclinical research. Nature. 490, 187-191 (2012).
  22. Hamby, M. E., Uliasz, T. F., Hewett, S. J., Hewett, J. A. Characterization of an improved procedure for the removal of microglia from confluent monolayers of primary astrocytes. J Neurosci Methods. 150, 128-137 (2006).
  23. McClive, P. J., Sinclair, A. H. Rapid DNA extraction and PCR-sexing of mouse embryos. Molecular reproduction and development. 60, 225-226 (2001).
  24. Wolterink-Donselaar, I. G., Meerding, J. M., Fernandes, C. A method for gender determination in newborn dark pigmented mice. Lab Anim (NY). 38, 35-38 (2009).
  25. Uliasz, T. F., Hamby, M. E., Jackman, N. A., Hewett, J. A., Hewett, S. J. Generation of primary astrocyte cultures devoid of contaminating microglia. Methods Mol Biol. 814, 61-79 (2012).
  26. Raponi, E., et al. S100B expression defines a state in which GFAP-expressing cells lose their neural stem cell potential and acquire a more mature developmental stage. Glia. 55, 165-177 (2007).
  27. Souza, D. G., Bellaver, B., Souza, D. O., Quincozes-Santos, A. Characterization of adult rat astrocyte cultures. PloS one. 8, e60282 (2013).
  28. Puschmann, T. B., Dixon, K. J., Turnley, A. M. Species differences in reactivity of mouse and rat astrocytes in vitro. Neuro-Signals. 18, 152-163 (2010).
  29. Schildge, S., Bohrer, C., Beck, K., Schachtrup, C. Isolation and culture of mouse cortical astrocytes. Journal of visualized experiments : JoVE. , (2013).
  30. Saura, J. Microglial cells in astroglial cultures: a cautionary note. J Neuroinflammation. 4 (26), (2007).

Play Video

Bu Makaleden Alıntı Yapın
Chanana, V., Tumturk, A., Kintner, D., Udho, E., Ferrazzano, P., Cengiz, P. Sex Differences in Mouse Hippocampal Astrocytes after In-Vitro Ischemia. J. Vis. Exp. (116), e53695, doi:10.3791/53695 (2016).

View Video