Supraspinal projections are important for pain perception and other behaviors, and serotonergic fibers are one of these fiber systems. The present study focused on the application of the combined CLARITY/CUBIC protocol to the mouse spinal cord in order to investigate the termination of these serotonergic fibers.
长递减纤维脊髓是运动,疼痛的感知,和其他行为的关键。在大多数这些光纤系统的脊髓纤维端接图案没有在任何物种被彻底调查。血清素纤维,其投射到脊髓,已经研究了在大鼠和负鼠上组织切片和它们的功能意义已经基于在脊髓其光纤端接图案被推断出来。与净度和立方技术的发展,有可能研究这种纤维系统及其在脊髓分布,这是可能揭示血清素脊髓上通路的先前未知的功能。在这里,我们使用相结合的清晰度和CUBIC成像技术在小鼠脊髓血清素纤维提供了详细的方案。该方法涉及的小鼠的灌注的水凝胶溶液中,澄清的组织与COMBIN清除试剂的通货膨胀。脊髓组织在不到2周清除,5-羟色胺随后的免疫荧光染色在不到十天完成。用多光子荧光显微镜,所述组织被扫描,并使用Osirix软件的3D图像被重建。
Supraspinal projections are responsible for the modulation of diverse behaviors such as pain perception. One of the projections carrying nociceptive information contains serotoninergic fibers, which originate from the hindbrain raphe and adjacent reticular nuclei1,2. Physiological and pharmacological studies have demonstrated an increased release of serotonin in the dorsal horn of the spinal cord after electrical stimulation of the raphe nuclei in the hindbrain3-5. In the rat and opossum, serotonergic raphespinal fibers have dense terminals, not only in the dorsal horn6-8, but also in the intermediate zone7,9,10, the ventral horn7,11, and even lamina 1012,13. There are no similar studies in the mouse. The present study aimed to map the termination pattern of serotonergic fibers arising from the hindbrain raphe nuclei and their adjacent reticular nuclei in the mouse spinal cord using the recently published CLARITY14 method and its modification – CUBIC15.
Conventional fluorescence or peroxidase immunohistochemistry of the spinal cord clearly shows the distribution of serotonergic fibers in the gray matter of the spinal cord in 30-40 µm thick cross-sections. However, this approach does not show the continuity of the serotonergic fiber tracts in the white matter and their collaterals in the gray matter. Although the 3D reconstruction of histological sections has advanced our knowledge of fiber tracts, it remains a challenge for histologists and anatomists to follow a single tract due to small distortions in the tissue caused by cutting. To circumvent this obstacle a number of researchers have developed various protocols for making the whole tissue structure transparent, and collecting an image of unaltered tissue in a single video file17-21. So far, the clear, lipid-exchanged, acrylamide-hybridized rigid, imaging/ immunostaining compatible, tissue hydrogel (CLARITY) technique, developed by Deisseroth’s group14,15, as well as CUBIC, developed by Susaki et al16 are the most successful. Since the publication of the protocols, many researchers have started using these techniques to investigate various aspects of biological tissues, including, not only the brain22-25, but also the heart, kidneys, intestine, and the lungs26,27.
By fixing the mouse spinal cord with the hydrogel solution (CLARITY) and clearing with the CUBIC reagents (which is a much faster method than that described by the original CLARITY protocol14,15), a spinal cord tissue block of 2-3 mm long was cleared within two weeks and immunofluorescence staining for serotonin completed in eight days. With just a combination of chemical agents, conventional immunohistochemistry can be used to create an image of individual fiber tracts in a 3D video file in approximately one month.
协议中所述显示了如何像血清素纤维在小鼠脊髓与组合的清晰度和CUBIC技术。它与由Cheung等 14和托默等人 15开发的被动资料交换协议引入了更快的结算处理,并允许脊髓组织要由水凝胶清除期间很好的支持。
鼠标脊髓定影期间的一个重要步骤,所报告的Cheung等 14和托默等人 15,是保持所有的解决方案在冰上,其防止?…
The authors have nothing to disclose.
This work was supported by the Australian Research Council Centre of Excellence for Integrative Brain Function (ARC Centre Grant CE140100007), an NHMRC project grant (#1086643). Prof. George Paxinos is supported by a Senior Principal Research Fellow NHMRC grant (#1043626).
Photoinitiator VA044 | Wako | va-044/225-02111 | http://www.wako-chem.co.jp/specialty/waterazo/VA-044.htm |
40% acrylamide solution | Bio Rad | 161-0140 | http://www.bio-rad.com/en-au/sku/161-0140-40-acrylamide-solution |
2% Bis Solution | Bio Rad | 161-0142 | http://www.bio-rad.com/en-au/sku/161-0142-2-bis-solution?parentCategoryGUID=5e7a4f31-879c-4d63-ba0b-82556a0ccf1d |
paraformaldehyde | Sigma | 158127 | http://www.sigmaaldrich.com/catalog/product/sial/158127?lang=en®ion=AU |
urea | Merck Millipore | 66612 | http://www.merckmillipore.com/AU/en/product/Urea—CAS-57-13-6—Calbiochem,EMD_BIO-66612 |
N,N,N’,N’-tetrakis (2-hydroxypropyl) ethylenediamine | Merck Millipore | 821940 | http://www.merckmillipore.com/AU/en/product/Ethylenediamine-N,N,N',N'-tetra-2-propanol,MDA_CHEM-821940 |
Triton-X 100 | Merck Millipore | 648462 | http://www.merckmillipore.com/AU/en/product/TRITON®-X-100-Detergent—CAS-9002-93-1—Calbiochem,EMD_BIO-648462 |
sucrose | Sigma | S0389 | http://www.sigmaaldrich.com/catalog/product/sigma/s0389?lang=en®ion=AU |
2,2’,2’’- nitrilotriethanol | Merck Millipore | 137002 | http://www.merckmillipore.com/AU/en/product/Triethanolamine-(Trolamine),MDA_CHEM-137022 |
serotonin antibody | Merck Millipore | AB938 | http://www.merckmillipore.com/AU/en/product/Anti-Serotonin-Antibody,MM_NF-AB938 |
goat anti rabbit IgG (H+L) Secondary Antibody, Alexa Fluor® 594 conjugate | Life Technologies | A-11012 | https://www.lifetechnologies.com/order/genome-database/antibody/Rabbit-IgG-H-L-Secondary-Antibody-Polyclonal/A-11012 |
multi-photon microscope | Leica | Leica TCS SP5 MP STED | http://www.leica-microsystems.com/products/confocal-microscopes/details/product/leica-tcs-sp5-mp/ |