Özet

遠赤外線レーザーの排出量とその周波数の測定を特徴付けます

Published: December 18, 2015
doi:

Özet

We describe the generation of far-infrared radiation using an optically pumped molecular laser along with the measurement of their frequencies with heterodyne techniques. The experimental system and techniques are demonstrated using difluoromethane (CH2F2) as the laser medium whose results include three new laser emissions and eight measured laser frequencies.

Abstract

遠赤外線の発生とその後の測定は、高分解能分光法、電波天文学、およびテラヘルツイメージングにおいて多くの用途を発見しました。約45年にわたって、コヒーレント、遠赤外線の発生は、光励起分子のレーザーを使用して達成されました。遠赤外線レーザー放射線が検出されると、これらのレーザ放射の周波数は三レーザーヘテロダイン技術を用いて測定されます。この技術では、光励起分子レーザから未知の周波数は、二つの安定化、赤外線基準周波数との差周波数で混合されます。これらの基準周波数は、それぞれが外部低圧基準セルからの蛍光信号を用いて安定化され、独立した二酸化炭素レーザによって生成されます。既知および未知のレーザ周波数間のビートが得られ、その出力仕様に観察される金属 – 絶縁体 – 金属点接触ダイオード検出器によって監視されますtrumアナライザ。これらのレーザ放射との間のビート周波数は、その後、未知の遠赤外線レーザ周波数を推定することが知られている基準周波数で測定され、組み合わされます。それらはしばしば高いのように、他の測定のための基準として使用されているように、この技術を用いて測定レーザ周波数の結果の1シグマ分数不確かさが10 7±5重量部である。正確に遠赤外線レーザ放射の周波数を決定することは重要ですレーザー磁気共鳴を用いたフリーラジカルの-resolution分光調査。この研究の一環として、ジフルオロメタン、CH 2 F 2は 、遠赤外線レーザ媒質として使用しました。全部で8つの遠赤外線レーザー周波数は0.359から1.273テラヘルツの範囲の周波数を有する第1の時間を測定しました。これらのレーザーの排出量のうちの3つは、この調査中に発見され、CO 2に対するそれらの最適運転圧力、偏光で報告されています</suB>レーザー、強度をポンプ。

Introduction

遠赤外線レーザ周波数の測定は、最初の彼らは、マイクロ波信号の高次高調波と混合して直接放電シアン化水素レーザーからの311と337ミクロンの排出のための周波数を測定1967年Hockerおよび共同研究者によって行われました。シリコンダイオード1インチより高い周波数を測定するために、レーザと高調波の混合装置のチェーンは、レーザの高調波2を生成するために使用されました。最終的には両者はレーザが必要な差周波数を3,4を合成するために選択された二酸化炭素(CO 2)を安定化します。今日、4テラヘルツまでの遠赤外線レーザー周波数が2で生成された差分周波数の最初の高調波を使用して、この技術を用いて測定することができるCO 2基準レーザを安定化。より高い周波数のレーザー放射は、また、メタノールの同位体のCHD 2 OH及びCH 3から9テラヘルツレーザ放射として第二高調波を用いて測定することができます</s> 18 OH UB。長年の間に5,6、レーザー周波数の正確な測定は、科学実験7,8の数に影響を与えたとパリでの度量衡の総会によってメートルの新しい定義の採用を可能にしました1983年9から11

例えば、記載されたもののようなヘテロダイン技術は、光励起分子レーザによって生成された遠赤外線レーザ周波数の測定において非常に有益でした。チャンとブリッジ12によって光学的に励起分子レーザの発見以来、光学的に励起遠赤外線レーザ放射の何千ものレーザ媒質の様々な生成されています。光学的にCO 2レーザで励起するとき、例えば、ジフルオロメタン(CH 2 F 2)とその同位体は、250以上のレーザー放射を生成します。その波長は約95.6から1714.1ミクロンの範囲13 </s18 > 15までのこれらのレーザー排出量の約75%は、いくつかの分光16が割り当てられているが、それらの周波数が測定されてきました。

これらのレーザー、及びそれらの正確に測定された周波数は、高分解能分光法の発展に重要な役割を果たしています。彼らは、レーザーガスの赤外分光研究のための重要な情報を提供します。彼らはしばしば吸収スペクトル19から直接アクセスできない励起振動状態レベルの間の接続を提供するので、多くの場合、これらのレーザの周波数は、赤外線および遠赤外線スペクトルの分析を確認するために使用されます。彼らはまた、レーザー磁気共鳴技術20で一過、短 ​​寿命のフリーラジカルを調査研究のための主要な放射源として機能します。この非常に敏感な技術では、常磁性原子、分子、分子イオンで回転し、RO-振動ゼーマンスペクトルは、rすることができますこれらのフリーラジカルを作成するために使用される反応速度を調査する能力とともにecorded分析しました。

この作業では、 図1に示した光励起分子レーザは、ジフルオロメタンから遠赤外線レーザー放射を生成するために使用されてきました。このシステムは、連続波(CW)CO 2ポンプレーザと遠赤外線レーザ共振器から成ります。遠赤外線レーザキャビティ内部のミラーが残りのポンプ放射を散乱、空洞の終わりに終了する前に、26の反射を受けて、研磨銅管の下のCO 2レーザ放射をリダイレクトします。従って、遠赤外線レーザー媒質は、横ポンピングジオメトリを使用して励起されます。レーザー作用を生成するために、いくつかの変数がいくつか同時に、調整され、レーザ放射が観測されると、すべてのその後に最適化されています。

この実験では、遠赤外線レーザー放射線は、金属INSUによって監視されていますレータ – 金属(MIM)点接触ダイオード検出器。 MIMダイオード検出器は、1969年21は 、レーザ周波数の測定に使用されているレーザ周波数の測定は23、MIMダイオード検出器は、ダイオード上に2つ以上の放射線源との間の入射高調波ミキサです。 MIMダイオード検出器は、光学研磨ニッケルベース 24 に接触する先鋭化タングステン線で構成されています。ニッケルベースは、絶縁層である、天然に存在する薄い酸化物層を有しています。

当初は文献に記載された方法に従って27 レーザ発光が検出されたら、その周波数は、3つのレーザーヘテロダイン法25を用いて測定しながら、その波長、偏光、強度、及び最適化された動作圧力を記録しました。 4. 図2は、2つの追加のCW CO 2参照レーザは、独立した周波数のSTAを有する光ポンピング分子レーザを示しています外部、低圧参照セル28から 4.3ミクロンの蛍光シグナルのラムディップを利用bilizationシステム。この原稿は、遠赤外レーザーの排出量だけでなく、その波長を推定すると、正確にその頻度を決定する方法を検索するために使用されるプロセスの概要を説明します。三レーザーヘテロダイン技術に関する具体的なだけでなく、様々なコンポーネントやシステムの動作パラメータは参照4、25-27、29、および30と一緒に補足表Aに記載されています。

Protocol

実験1.計画事前の作業を評価するために、文献の調査を実施することは、この実験のためにCH 2 F 2であり、関心のレーザ媒質を用いて行きました。そのような彼らの波長や周波数などの回線に関するすべての情報と共に、すべての既知のレーザー排出量を特定します。 37 -知られているレーザーの排出量のいくつかの調査は13,31利用できます。 </…

Representative Results

前述のように、遠赤外線レーザー放射のために報告された周波数は、CO 2基準レーザ線の少なくとも2つの異なるセットを実行少なくとも12回の測定の平均値である。使用した場合、表2は、235.5マイクロメートルのレーザ発光のために記録されたデータを概説します9、P 04、CO 2ポンプレーザ。この遠赤外線レーザー放射のために、ビート周波数の14の個々の測?…

Discussion

いくつかの追加の議論が必要なプロトコル内いくつかの重要なステップがあります。遠赤外レーザ波長を測定する場合、ステップ2.5.3に概説されるように、それが使用されている遠赤外線レーザー放射の同じモードを確保することが重要です。遠赤外レーザーの波長( すなわち、TEM 00、TEM 01など)の複数のモードは、レーザキャビティ内で生成することができ、それが…

Açıklamalar

The authors have nothing to disclose.

Acknowledgements

This work was supported in part by the Washington Space Grant Consortium under Award NNX10AK64H.

Materials

Vacuum pump Leybold Trivac D4A HE-175 oil; Quantity = 3
Vacuum pump Leybold Trivac D8B or D16B Fomblin Fluid; Quantity = 1 of each
Vacuum pump Leybold Trivac D25B HE-175 oil; Quantity = 1
Optical chopper with controller Stanford Research Systems SR540
Lock-in amplifier Stanford Research Systems SR830
Spectrum analyzer Agilent E4407B ESA-E Series, 9 kHz to 26.5 GHz Spectrum Analyzer
Amplifier  Miteq AFS-44 Provides amplification of signals between 2 and 18 GHz. The amplifier is powered by a Hewlett Packard triple output DC power supply, model E3630A.
Amplifier  Avantek AWL-1200B Provides amplification of signals less than 1.2 GHz.
Power supply Hewlett Packard E3630A Low voltage DC power supply for amplifier.
Power supply Glassman KL Series High voltage power supply for the CO2 lasers; Quantity = 2; negative polarity
Power supply Fluke 412B High voltage power supply used with the NIST Asymmetric HV Amp
Detector Judson Infrared Inc J10D For fluorescence cell; Quantity = 2
CO2 laser spectrum analyzer Optical Engineering  16-A Currently sold by Macken Instruments Inc.
Thermal imaging plates with UV light Optical Engineering  Primarily used for aligning the CO2 reference lasers. Currently sold by Macken Instruments Inc.
Resistors Ohmite  L225J100K 100 kW, 225 W. Between 4 to 6 resistors are used in each ballast system. Each CO2 laser has its own ballast system. Fans are used to cool the resistors.
HV relay, SPDT CII Technologies H-17 Quantity = 3; one for each CO2 laser
Amplifier  Princeton Applied Research PAR 113 Used with fluorescence cell; Quantity = 2
Oscilloscope Tektronix 2235A Similar models are also used; Quantity = 2
Oscilloscope/Differential amplifier Tektronix 7903 oscilloscope with 7A22 differential amplifier
Power meter with sensor Coherent 200 For use below 10 W.  This is the power meter shown in Figure 2.
Power meter with sensor Scientech, Inc Vector S310 For use below 30 W
Multimeter Fluke 73III Similar models are also used; Quantity = 3
Data acquisition National Instruments NI cDAQ 9174 chassis with NI 9223 input module Uses LabVIEW software
Simichrome polish Happich GmbH Polish for the Nickel base used in the MIM diode detector. Although the Nickel base can be used immediately after polishing, a 12 hour lead time is typically recommended.
Pressure gauge Wallace and Tiernan 61C-1D-0050 Series 300; for CO2 laser; Quantity = 3
Pressure gauge with controller Granville Phillips Series 375 For far-infrared laser
Zirconium Oxide felt Zircar Zirconia ZYF felt Used as a beam stop
Zirconium Oxide board Zircar Zirconia ZYZ-3 board Used as a beam stop; Quantity = 4
Teflon sheet Scientific Commodities, Inc BB96312-1248 1/32 inch thick; used for the far-infrared laser output window
Polypropylene C-Line sheet protectors 61003 used for the far-infrared laser output window
Vacuum grease Apiezon
Power supply Kepco NTC 2000 PZT power supply
PZT tube Morgan Advanced Materials 1 inch length, 1 inch outer diameter, 0.062 inch thickness, reverse polarity (positive voltage on outside); Quantity = 3
ZnSe (AR coated) II-VI Inc CO2 laser window (Quantity = 3), lens, and beam splitter (Quantity 3)
NaCl window Edmond Optics Quantity = 1
CaF window Edmond Optics Quantity = 2
Laser mirrors and gratings Hyperfine, Inc Gold-coated; includes positioning mirrors
Glass laser tubes and reference cells Allen Scientific Glass
MIM diode detector Custom Microwave, Inc
Diğer Other materials include magnetic bases, base plates, base clamps, XYZ translation stage, etc.

Referanslar

  1. Hocker, L. O., Javan, A., Ramachandra Rao, D., Frenkel, L., Sullivan, T. Absolute frequency measurement and spectroscopy of gas laser transitions in the far infrared. Appl. Phys. Lett. 10 (5), 147-149 (1967).
  2. Wells, J. S., Evenson, K. M., Day, G. W., Halford, D. Role of infrared frequency synthesis in metrology. Proc. IEEE. 60 (5), 621-623 (1972).
  3. Whitford, B. G., Siemsen, K. J., Riccius, H. D., Baird, K. A. New frequency measurements and techniques in the 30-THz region. IEEE Trans. Instrum. Meas. 23 (4), 535-539 (1974).
  4. Petersen, F. R., et al. Far infrared frequency synthesis with stabilized CO2 lasers: Accurate measurements of the water vapor and methyl alcohol laser frequencies. IEEE J. Quantum Elect. 11 (10), 838-843 (1975).
  5. Uranga, C., Connell, C., Borstad, G. M., Zink, L. R., Jackson, M. Discovery and frequency measurement of short-wavelength far-infrared laser emissions from optically pumped 13CD3OH and CHD2OH. Appl. Phys. B. 88 (4), 503-505 (2007).
  6. Jackson, M., Milne, J. A., Zink, L. R. Measurement of optically pumped CH318OH laser frequencies between 3 and 9 THz. IEEE J. Quantum Elect. 47 (3), 386-389 (2011).
  7. Evenson, K. M., et al. Optically pumped FIR lasers: Frequency and power measurements and laser magnetic resonance spectroscopy. IEEE J. Quantum Elect. 13 (6), 442-444 (1977).
  8. Evenson, K. M., Jennings, D. A., Petersen, F. R. Tunable far-infrared spectroscopy. Appl. Phys. Lett. 44 (6), 576-577 (1984).
  9. Evenson, K. M., et al. Speed of light from direct frequency and wavelength measurements of the methane-stabilized laser. Phys. Rev. Lett. 29 (19), 1346-1349 (1972).
  10. BIPM. . Resolution 1. , 97-98 (1983).
  11. Giacomo, P. News from the BIPM. Metrol. 20 (1), 25-30 (1984).
  12. Chang, T. Y., Bridges, T. J. Laser action at 452, 496 and 541 µm in optically pumped CH3F. Opt. Commun. 1 (9), 423-426 (1970).
  13. Douglas, N. G., Walter, H. . Millimetre and Submillimetre Wavelength Lasers: A Handbook of CW Measurements. 61, (1989).
  14. Zerbetto, S. C., Vasconcellos, E. C. C., Zink, L. R., Evenson, K. M. 12CH2F2 and 13CH2F2 far-infrared lasers: New lines and frequency measurements. Int. J. Infrared Millim. Waves. 18 (12), 2301-2306 (1997).
  15. Jackson, M., Alves, H., Holman, R., Minton, R., Zink, L. R. New cw optically pumped far-infrared laser emissions generated with a transverse or ‘zig-zag’ pumping geometry. J. Infrared, Millim., Terahertz Waves. 35 (3), 282-287 (2014).
  16. Danielewicz, E. J., Button, K. J., Inguscio, M., Strumia, F. . The optically pumped difluoromethane far-infrared laser. Reviews of Infrared and Millimeter Waves. 2, 223-250 (1983).
  17. Deroche, J. C., Benichou, E. K., Guelachvili, G., Demaison, J. Assignments of submillimeter emissions in difluoromethane pumped by 12C18O2 and 12C18O2 lasers. Int. J. Infrared Millim. Waves. 7 (10), 1653-1675 (1986).
  18. Jackson, M., Zink, L. R., McCarthy, M. C., Perez, L., Brown, J. M. The far-infrared and microwave spectra of the CH radical in the v = 1 level of the X2Π. J. Mol. Spectrosc. 247 (2), 128-139 (2008).
  19. Zhao, S., Lees, R. M. CH318OH: Assignment of FIR laser lines optically pumped in the in-plane CH3-rocking band. J. Mol. Spectrosc. 168 (1), 67-81 (1994).
  20. Evenson, K. M., Saykally, R. J., Jennings, D. A., Curl, R. F., Brown, J. M. Far infrared laser magnetic resonance. Chemical and Biochemical Applications of Lasers. 5, 95-138 (1980).
  21. Hocker, L. O., Sokoloff, D. R., Daneu, V., Szoke, A., Javan, A. Frequency mixing in the infrared and far-infrared using a metal-to-metal point contact diode. Appl. Phys. Lett. 12 (12), 401-402 (1968).
  22. Daneu, V., Sokoloff, D., Sanchez, A., Javan, A. Extension of laser harmonic-frequency mixing techniques into the 9 μ region with an infrared metal-metal point-contact diode. Appl. Phys. Lett. 15 (12), 398-400 (1969).
  23. Jennings, D. A., Evenson, K. M., Knight, D. J. E. Optical Frequency Measurements. Proc. IEEE. 74 (1), 168-179 (1986).
  24. Zink, L. R. . Highly accurate molecular constants for CO, HF, HCl, OH, NaH, MgH, and O2: Rotational transition frequencies measured with tunable far infrared radiation [thesis]. , (1986).
  25. Xu, L. -. H., et al. Methanol and the optically pumped far-infrared laser. IEEE J. Quantum Elect. 32 (3), 392-399 (1996).
  26. Jackson, M., Zink, L. R., Garrod, T. J., Petersen, S., Stokes, A., Theisen, M. The generation and frequency measurement of short-wavelength far-infrared laser emissions. IEEE J. Quantum Elect. 41 (12), 1528-1532 (2005).
  27. Jackson, M., Smith, M., Gerke, C., Barajas, J. M. Measurement of far-infrared laser frequencies from methanol isotopologues. IEEE J. Quantum Elect. 51 (4), 1500105 (2015).
  28. Freed, C., Javan, A. Standing-wave saturation resonances in the CO2 10.6 μ transitions observed in a low-pressure room-temperature absorber gas. Appl. Phys. Lett. 17 (2), 53-56 (1970).
  29. DeShano, B., Olivier, K., Cain, B., Zink, L. R., Jackson, M. Using guide wavelengths to assess far-infrared laser emissions. J. Infrared, Millim., Terahertz Waves. 36 (1), 13-30 (2015).
  30. Jackson, M., Nichols, A. J., Womack, D. R., Zink, L. R. First laser action observed from optically pumped CH317OH. IEEE J. Quantum Elect. 48 (3), 303-306 (2012).
  31. Inguscio, M., Moruzzi, G., Evenson, K. M., Jennings, D. A. A review of frequency measurements of optically pumped lasers from 0.1 to 8 THz. J. Appl. Phys. 60 (12), R161-R191 (1986).
  32. Pereira, D., et al. A review of optically pumped far-infrared laser lines from methanol isotopes. Int. J. Infrared Millim. Waves. 15 (1), 1-44 (1994).
  33. Zerbetto, S. C., Vasconcellos, E. C. C. Far infrared laser lines produced by methanol and its isotopic species: A review. Int. J. Infrared Millim. Waves. 15 (5), 889-933 (1994).
  34. Moruzzi, G., Winnewisser, B. P., Winnewisser, M., Mukhopadhyay, I., Strumia, F. . Microwave, Infrared and Laser Transitions of Methanol: Atlas of Assigned Lines from 0 to 1258 cm-1. , (1995).
  35. Weber, M. J. . Handbook of Laser Wavelengths. , (1999).
  36. De Michele, A., et al. FIR laser lines from CH3OD: A review. Int. J. Infrared Millim. Waves. 25 (5), 725-734 (2004).
  37. De Michele, A., Carelli, G., Moruzzi, G., Moretti, A. Hydrazine far-infrared laser lines and assignments: a review. J. Opt. Soc. Am. B. 22 (7), 1461-1470 (2005).
  38. Moraes, J. C. S., et al. Experimental investigation of 13CD3OH infrared transitions by means of optoacoustic spectroscopy. Int. J. Infrared Millim. Waves. 13 (11), 1801-1823 (1992).
  39. Viscovini, R. C., Scalabrin, A., Pereira, D. Infrared optoacoustic spectroscopy of 13CD3OD around the 10R and 10P CO2 laser lines. Int. J. Infrared Millim. Waves. 17 (11), 1821-1838 (1996).
  40. Maki, A. G., Chou, C. C., Evenson, K. M., Zink, L. R., Shy, J. T. Improved molecular constants and frequencies for the CO2 laser from new high-J regular and hot-band frequency measurements. J. Mol. Spectrosc. 167 (1), 211-224 (1994).
  41. Douglas, N. G., Krug, P. A. CW laser action in ethyl chloride. IEEE J. Quantum Elect. 18 (10), 1409-1410 (1982).
  42. Schwaller, P., Steffen, H., Moser, J. F., Kneubühl, F. K. Interferometry of resonator modes in submillimeter wave lasers. Appl. Opt. 6 (5), 827-829 (1967).
  43. Steffen, H., Kneubühl, F. K. Resonator interferometry of pulsed submillimeter-wave lasers. IEEE J. Quantum Elect. 4 (12), 992-1008 (1968).
  44. Whitbourn, L. B., Macfarlane, J. C., Stimson, P. A., James, B. W., Falconer, I. S. An experimental study of a cw optically pumped far infrared formic acid vapour laser. Infrared Phys. 28 (1), 7-20 (1988).
  45. Belland, P., Véron, D., Whitbourn, L. B. Mode study, beam characteristics and output power of a cw 337 μm HCN waveguide laser. J. Phys. D: Appl. Phys. 8 (18), 2113-2122 (1975).
  46. Inguscio, M., Ioli, N., Moretti, A., Strumia, F., D’Amato, F. Heterodyne of optically pumped FIR molecular lasers and direct frequency measurement of new lines. Appl. Phys. B. 40 (3), 165-169 (1986).
  47. Carelli, G., et al. CH318OH: FIR laser line frequency measurements and assignments. Infrared Phys. Technol. 35 (6), 743-755 (1994).
  48. Pearson, J. C., Müller, H. S. P., Pickett, H. M., Cohen, E. A., Drouin, B. J. Introduction to submillimeter, millimeter and microwave spectral line catalog. J. Quant. Spectrosc. Radiat. Transf. 111 (11), 1614-1616 (2010).
  49. Ehasz, E. J., Goyette, T. M., Giles, R. H., Nixon, W. E. High-resolution frequency measurements of far-infrared laser lines. IEEE J. Quantum Elect. 46 (4), 474-477 (2010).
  50. Pearson, J. C., Drouin, B. J., Yu, S., Gupta, H. Microwave spectroscopy of methanol between 2.48 and 2.77 THz. J. Opt. Soc. Am. B. 28 (10), 2549-2577 (2011).
  51. Consolino, L., et al. Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers. Nat. Commun. 3, Article No. 1040 (2012).
  52. Bartalini, S., et al. Frequency-comb-assisted terahertz quantum cascade laser spectroscopy. Phys. Rev. X. 4 (2), 021006 (2014).
  53. Finneran, I. A., Good, J. T., Holland, D. B., Carroll, P. B., Allodi, M. A., Blake, G. A. Decade-spanning high-precision terahertz frequency comb. Phys. Rev. Lett. 114 (16), Article No. 163902 (2015).
  54. De Natale, P., et al. Quantum cascade laser THz metrology. Proc. SPIE.. , 93701D (2015).
  55. Dickinson, J. C., Goyette, T. M., Waldman, J. . High resolution imaging using 325 GHz and 1.5 THz transceivers. , 373-380 (2004).
  56. Vasconcellos, E. C. C., Zerbetto, S. C., Holecek, J. C., Evenson, K. M. Short-wavelength far-infrared laser cavity yielding new lines in methanol. Opt. Lett. 20 (12), 1392-1393 (1995).

Play Video

Bu Makaleden Alıntı Yapın
Jackson, M., Zink, L. R. Characterizing Far-infrared Laser Emissions and the Measurement of Their Frequencies. J. Vis. Exp. (106), e53399, doi:10.3791/53399 (2015).

View Video