We describe the generation of far-infrared radiation using an optically pumped molecular laser along with the measurement of their frequencies with heterodyne techniques. The experimental system and techniques are demonstrated using difluoromethane (CH2F2) as the laser medium whose results include three new laser emissions and eight measured laser frequencies.
遠赤外線の発生とその後の測定は、高分解能分光法、電波天文学、およびテラヘルツイメージングにおいて多くの用途を発見しました。約45年にわたって、コヒーレント、遠赤外線の発生は、光励起分子のレーザーを使用して達成されました。遠赤外線レーザー放射線が検出されると、これらのレーザ放射の周波数は三レーザーヘテロダイン技術を用いて測定されます。この技術では、光励起分子レーザから未知の周波数は、二つの安定化、赤外線基準周波数との差周波数で混合されます。これらの基準周波数は、それぞれが外部低圧基準セルからの蛍光信号を用いて安定化され、独立した二酸化炭素レーザによって生成されます。既知および未知のレーザ周波数間のビートが得られ、その出力仕様に観察される金属 – 絶縁体 – 金属点接触ダイオード検出器によって監視されますtrumアナライザ。これらのレーザ放射との間のビート周波数は、その後、未知の遠赤外線レーザ周波数を推定することが知られている基準周波数で測定され、組み合わされます。それらはしばしば高いのように、他の測定のための基準として使用されているように、この技術を用いて測定レーザ周波数の結果の1シグマ分数不確かさが10 7±5重量部である。正確に遠赤外線レーザ放射の周波数を決定することは重要ですレーザー磁気共鳴を用いたフリーラジカルの-resolution分光調査。この研究の一環として、ジフルオロメタン、CH 2 F 2は 、遠赤外線レーザ媒質として使用しました。全部で8つの遠赤外線レーザー周波数は0.359から1.273テラヘルツの範囲の周波数を有する第1の時間を測定しました。これらのレーザーの排出量のうちの3つは、この調査中に発見され、CO 2に対するそれらの最適運転圧力、偏光で報告されています</suB>レーザー、強度をポンプ。
遠赤外線レーザ周波数の測定は、最初の彼らは、マイクロ波信号の高次高調波と混合して直接放電シアン化水素レーザーからの311と337ミクロンの排出のための周波数を測定1967年Hockerおよび共同研究者によって行われました。シリコンダイオード1インチより高い周波数を測定するために、レーザと高調波の混合装置のチェーンは、レーザの高調波2を生成するために使用されました。最終的には両者はレーザが必要な差周波数を3,4を合成するために選択された二酸化炭素(CO 2)を安定化します。今日、4テラヘルツまでの遠赤外線レーザー周波数が2で生成された差分周波数の最初の高調波を使用して、この技術を用いて測定することができるCO 2基準レーザを安定化。より高い周波数のレーザー放射は、また、メタノールの同位体のCHD 2 OH及びCH 3から9テラヘルツレーザ放射として第二高調波を用いて測定することができます</s> 18 OH UB。長年の間に5,6、レーザー周波数の正確な測定は、科学実験7,8の数に影響を与えたとパリでの度量衡の総会によってメートルの新しい定義の採用を可能にしました1983年9から11
例えば、記載されたもののようなヘテロダイン技術は、光励起分子レーザによって生成された遠赤外線レーザ周波数の測定において非常に有益でした。チャンとブリッジ12によって光学的に励起分子レーザの発見以来、光学的に励起遠赤外線レーザ放射の何千ものレーザ媒質の様々な生成されています。光学的にCO 2レーザで励起するとき、例えば、ジフルオロメタン(CH 2 F 2)とその同位体は、250以上のレーザー放射を生成します。その波長は約95.6から1714.1ミクロンの範囲13 – </s18 – > 15までのこれらのレーザー排出量の約75%は、いくつかの分光16が割り当てられているが、それらの周波数が測定されてきました。
これらのレーザー、及びそれらの正確に測定された周波数は、高分解能分光法の発展に重要な役割を果たしています。彼らは、レーザーガスの赤外分光研究のための重要な情報を提供します。彼らはしばしば吸収スペクトル19から直接アクセスできない励起振動状態レベルの間の接続を提供するので、多くの場合、これらのレーザの周波数は、赤外線および遠赤外線スペクトルの分析を確認するために使用されます。彼らはまた、レーザー磁気共鳴技術20で一過、短 寿命のフリーラジカルを調査研究のための主要な放射源として機能します。この非常に敏感な技術では、常磁性原子、分子、分子イオンで回転し、RO-振動ゼーマンスペクトルは、rすることができますこれらのフリーラジカルを作成するために使用される反応速度を調査する能力とともにecorded分析しました。
この作業では、 図1に示した光励起分子レーザは、ジフルオロメタンから遠赤外線レーザー放射を生成するために使用されてきました。このシステムは、連続波(CW)CO 2ポンプレーザと遠赤外線レーザ共振器から成ります。遠赤外線レーザキャビティ内部のミラーが残りのポンプ放射を散乱、空洞の終わりに終了する前に、26の反射を受けて、研磨銅管の下のCO 2レーザ放射をリダイレクトします。従って、遠赤外線レーザー媒質は、横ポンピングジオメトリを使用して励起されます。レーザー作用を生成するために、いくつかの変数がいくつか同時に、調整され、レーザ放射が観測されると、すべてのその後に最適化されています。
この実験では、遠赤外線レーザー放射線は、金属INSUによって監視されていますレータ – 金属(MIM)点接触ダイオード検出器。 MIMダイオード検出器は、1969年21は 、レーザ周波数の測定に使用されている–レーザ周波数の測定は23、MIMダイオード検出器は、ダイオード上に2つ以上の放射線源との間の入射高調波ミキサです。 MIMダイオード検出器は、光学研磨ニッケルベース 24 に接触する先鋭化タングステン線で構成されています。ニッケルベースは、絶縁層である、天然に存在する薄い酸化物層を有しています。
当初は文献に記載された方法に従って27 –レーザ発光が検出されたら、その周波数は、3つのレーザーヘテロダイン法25を用いて測定しながら、その波長、偏光、強度、及び最適化された動作圧力を記録しました。 4. 図2は、2つの追加のCW CO 2参照レーザは、独立した周波数のSTAを有する光ポンピング分子レーザを示しています外部、低圧参照セル28から 4.3ミクロンの蛍光シグナルのラムディップを利用bilizationシステム。この原稿は、遠赤外レーザーの排出量だけでなく、その波長を推定すると、正確にその頻度を決定する方法を検索するために使用されるプロセスの概要を説明します。三レーザーヘテロダイン技術に関する具体的なだけでなく、様々なコンポーネントやシステムの動作パラメータは参照4、25-27、29、および30と一緒に補足表Aに記載されています。
いくつかの追加の議論が必要なプロトコル内いくつかの重要なステップがあります。遠赤外レーザ波長を測定する場合、ステップ2.5.3に概説されるように、それが使用されている遠赤外線レーザー放射の同じモードを確保することが重要です。遠赤外レーザーの波長( すなわち、TEM 00、TEM 01など)の複数のモードは、レーザキャビティ内で生成することができ、それが…
The authors have nothing to disclose.
This work was supported in part by the Washington Space Grant Consortium under Award NNX10AK64H.
Vacuum pump | Leybold | Trivac D4A | HE-175 oil; Quantity = 3 |
Vacuum pump | Leybold | Trivac D8B or D16B | Fomblin Fluid; Quantity = 1 of each |
Vacuum pump | Leybold | Trivac D25B | HE-175 oil; Quantity = 1 |
Optical chopper with controller | Stanford Research Systems | SR540 | |
Lock-in amplifier | Stanford Research Systems | SR830 | |
Spectrum analyzer | Agilent | E4407B | ESA-E Series, 9 kHz to 26.5 GHz Spectrum Analyzer |
Amplifier | Miteq | AFS-44 | Provides amplification of signals between 2 and 18 GHz. The amplifier is powered by a Hewlett Packard triple output DC power supply, model E3630A. |
Amplifier | Avantek | AWL-1200B | Provides amplification of signals less than 1.2 GHz. |
Power supply | Hewlett Packard | E3630A | Low voltage DC power supply for amplifier. |
Power supply | Glassman | KL Series | High voltage power supply for the CO2 lasers; Quantity = 2; negative polarity |
Power supply | Fluke | 412B | High voltage power supply used with the NIST Asymmetric HV Amp |
Detector | Judson Infrared Inc | J10D | For fluorescence cell; Quantity = 2 |
CO2 laser spectrum analyzer | Optical Engineering | 16-A | Currently sold by Macken Instruments Inc. |
Thermal imaging plates with UV light | Optical Engineering | Primarily used for aligning the CO2 reference lasers. Currently sold by Macken Instruments Inc. | |
Resistors | Ohmite | L225J100K | 100 kW, 225 W. Between 4 to 6 resistors are used in each ballast system. Each CO2 laser has its own ballast system. Fans are used to cool the resistors. |
HV relay, SPDT | CII Technologies | H-17 | Quantity = 3; one for each CO2 laser |
Amplifier | Princeton Applied Research | PAR 113 | Used with fluorescence cell; Quantity = 2 |
Oscilloscope | Tektronix | 2235A | Similar models are also used; Quantity = 2 |
Oscilloscope/Differential amplifier | Tektronix | 7903 oscilloscope with 7A22 differential amplifier | |
Power meter with sensor | Coherent | 200 | For use below 10 W. This is the power meter shown in Figure 2. |
Power meter with sensor | Scientech, Inc | Vector S310 | For use below 30 W |
Multimeter | Fluke | 73III | Similar models are also used; Quantity = 3 |
Data acquisition | National Instruments | NI cDAQ 9174 chassis with NI 9223 input module | Uses LabVIEW software |
Simichrome polish | Happich GmbH | Polish for the Nickel base used in the MIM diode detector. Although the Nickel base can be used immediately after polishing, a 12 hour lead time is typically recommended. | |
Pressure gauge | Wallace and Tiernan | 61C-1D-0050 | Series 300; for CO2 laser; Quantity = 3 |
Pressure gauge with controller | Granville Phillips | Series 375 | For far-infrared laser |
Zirconium Oxide felt | Zircar Zirconia | ZYF felt | Used as a beam stop |
Zirconium Oxide board | Zircar Zirconia | ZYZ-3 board | Used as a beam stop; Quantity = 4 |
Teflon sheet | Scientific Commodities, Inc | BB96312-1248 | 1/32 inch thick; used for the far-infrared laser output window |
Polypropylene | C-Line sheet protectors | 61003 | used for the far-infrared laser output window |
Vacuum grease | Apiezon | ||
Power supply | Kepco | NTC 2000 | PZT power supply |
PZT tube | Morgan Advanced Materials | 1 inch length, 1 inch outer diameter, 0.062 inch thickness, reverse polarity (positive voltage on outside); Quantity = 3 | |
ZnSe (AR coated) | II-VI Inc | CO2 laser window (Quantity = 3), lens, and beam splitter (Quantity 3) | |
NaCl window | Edmond Optics | Quantity = 1 | |
CaF window | Edmond Optics | Quantity = 2 | |
Laser mirrors and gratings | Hyperfine, Inc | Gold-coated; includes positioning mirrors | |
Glass laser tubes and reference cells | Allen Scientific Glass | ||
MIM diode detector | Custom Microwave, Inc | ||
Diğer | Other materials include magnetic bases, base plates, base clamps, XYZ translation stage, etc. |