Insight into the complex actions of the brain requires advanced research tools. Here we demonstrate a novel silk-collagen-based 3D engineered model of neural tissue resembling brain-like architecture. The model can be used to study neuronal network assembly, axonal guidance, cell-cell interactions and electrical activity.
Despite huge efforts to decipher the anatomy, composition and function of the brain, it remains the least understood organ of the human body. To gain a deeper comprehension of the neural system scientists aim to simplistically reconstruct the tissue by assembling it in vitro from basic building blocks using a tissue engineering approach. Our group developed a tissue-engineered silk and collagen-based 3D brain-like model resembling the white and gray matter of the cortex. The model consists of silk porous sponge, which is pre-seeded with rat brain-derived neurons, immersed in soft collagen matrix. Polarized neuronal outgrowth and network formation is observed with separate axonal and cell body localization. This compartmental architecture allows for the unique development of niches mimicking native neural tissue, thus enabling research on neuronal network assembly, axonal guidance, cell-cell and cell-matrix interactions and electrical functions.
Le système nerveux central (SNC) peut être affectée par une variété de troubles impliquant vasculaire, structurelle et fonctionnelle, infectieux ou dégénératif. On estime que 6,8 millions de personnes meurent chaque année des suites de troubles neurologiques, qui représente un fardeau socio-économique mondiale croissante 1. Cependant, seulement quelques-uns des troubles ont traitements disponibles. Par conséquent, il existe un besoin critique de stratégies thérapeutiques innovantes pour les patients souffrant de troubles neurologiques. Malheureusement, de nombreuses thérapies ciblées SNC-échouent au cours des essais cliniques, en partie due à l'utilisation de modèles de recherche pré-clinique inadéquate, qui ne permettent pas une évaluation des impacts aigus et chroniques avec affichage fonctionnels physiologiquement pertinents.
En dépit des efforts de recherche importants au cours des dernières décennies, il ya une grande quantité inconnue sur la structure et la fonction du système nerveux central. Afin d'acquérir plus de connaissances, modèles animaux sont souvent de noused pour modéliser les états pathologiques, comme une lésion cérébrale traumatique (TBI) ou de démence, en particulier dans les études pré-cliniques. Toutefois, les animaux diffèrent de manière significative à la fois chez l'homme dans l'anatomie du système nerveux central, ainsi que de la fonction, et l'expression des gènes du métabolisme de 2-4. D'autre part, 2D cultures in vitro sont la méthode commune pour étudier la biologie cellulaire et sont couramment utilisés pour la découverte de médicaments. Cependant, des cultures de cellules 2D manquent de la complexité et de la pertinence physiologique par rapport au cerveau humain 7.5. Bien qu'il n'y ait pas de substitut pour le faible coût et la simplicité du 2D études de culture cellulaire ou de la complexité fournies par les modèles animaux, l'ingénierie tissulaire 3D pourrait générer des modèles de recherche améliorées pour combler l'écart qui existe entre la 2D in vitro et dans des approches in vivo. Ingénierie tissulaire 3D fournit des conditions expérimentales plus physiologiquement pertinents obtenus par les interactions entre les cellules et les signaux extracellulaires 3D fournis par les échafaudages de biomatériaux. Despite la preuve significative derrière la valeur des cultures 3D, il n'y a actuellement que quelques modèles de tissus 3D SNC tels que souches dérivées de cellules cultures organoïdes 8-10, neurospheroids 11 et dispersés cultures d'hydrogel 12,13. Y compris les méthodes techniques avancées multicouche 14 lithographie, impression en 3D et 15 ont été utilisées pour l'étude du poumon, du foie, du rein et le tissu. Cependant, il existe des modèles 3D absence du SNC qui permettent la croissance neuronale compartimenté, comme imitant l'architecture corticale et de la biologie. Séparé croissance des neurites à partir de corps cellulaires neuronaux a déjà été démontré dans les cultures 2D en utilisant microfabrication 16,17 permettant l'étude de traçage axone des voies, l'afflux de calcium, l'architecture du réseau et des activités. Cette idée nous a inspiré pour développer un tissu neural polarisée 3D où les corps cellulaires et les voies axonales sont situés dans des compartiments différents imitant l'architecture en couches du cerveau 18 </sup>. Notre approche est basée sur l'utilisation de la conception de l'échafaudage de soie unique qui accueille haute densité de cellules dans un volume confiné et permet excroissance de réseau dense axonale dans un gel de collagène. Ici, nous démontrons la procédure de montage complet de tissu cérébral comme y compris la fabrication de l'échafaudage et de la culture neuronale.
Here we described the guidelines to assemble a compartmentalized 3D brain-like tissue model. The model is characterized by dense polarized culture of neurons resulting in the development of two morphologically different compartments: one containing densely packed cell bodies, second containing pure axonal networks. Overall, the scaffold architecture and growth pattern mimic brain cortical tissue including the six laminar layers and white matter tracts21.
The donut-shaped silk protein-based tissue model allows for modifications and tuning of mechanical properties, versatile structural forms, hydrogel fillers and cellular components. Thus, this tissue model establishes a base platform for a wide range of studies. Silk is a favorable candidate for biomaterial platforms due to its biocompatibility, aqueous-based processing, and robust mechanical and degradation properties22. The silk matrix also serves as a stable anchor to reduce collagen gel contraction over time in culture. The properties such as silk concentration and porosity of the scaffold used in this model have been previously adjusted to achieve optimal cell growth and mechanical properties resulting in brain-like tissue elasticity18,23,24. We suggest to keep these parameters constant to ensure the successful outcome and reproducibility of the experiments.
The 3D neuronal network formation was achieved by combining two types of biomaterials with different mechanical properties: a stiff scaffold to provide neuronal anchoring and a softer gel matrix to permit axon penetration and connectivity in 3D. Selective material preferences of the silk scaffold and soft hydrogel provide the underlying principle for compartmentalizing the neurons from the axonal connections. Due to the inert nature of the silk scaffold, functionalization with poly-D-lysine is required for neuronal attachment. However, other cell adhesion promoting factors can be applied such as RGD25 or fibronectin26. To achieve the 3D network formation the silk scaffold needs to be filled with hydrogel in a timely manner as soon as neurons are attached to the scaffold. Likewise, the collagen matrix filler can be replaced by other hydrogels, thus allowing the study of the influence of 3D extracellular environments on axonal network formation to serve as a platform to evaluate novel hydrogels in terms of neuronal compatibility. Additionally, apart from rat cortical neurons other neuronal sources such as hippocampal neurons or induced pluripotent cell (iPSc)-derived neurons can be utilized. Moreover, the tissue model can be used to study heterocellular interactions by including glial cells along with neurons and to build more complex brain-like tissue.
As shown previously, our model can be utilized to evaluate neuronal functionality in 3D microenvironment with a variety of assays such as cell viability, gene expression, LC-MS/MS and electrophysiology, thus demonstrating physiological relevance of the model18. Other methods, which are frequently utilized to evaluate 3D tissue-engineered constructs, such as immunostaining and microscopy8,9,11 can also be used to assess cell distribution and extent of axonal network formation. However, it has to be noted, that due to the high density of the collagen matrix, the penetration of antibodies and depth of the imaging is limited to few hundred micrometers. Moreover, the signal to noise ratio may be affected by nonspecific background fluorescence. This can be overcome by using lipophilic cell tracers and genetically expressed fluorescent proteins which diminish the need for immunostaining11. Alternatively, the imaging can be performed with 2-photon microscopy instead of usual one-photon technique, which may reduce the signal loss, photobleaching, and can be extended to several hundred micrometers of depth.
Summarizing, the silk and collagen-based brain-like tissue offers a robust platform to study neuronal networks in 3D and is a starting point for the development of more advanced models of neurological disorders in the future. Independent from the mode of evaluation, the relative simplicity of this tissue model supports its utility, success and reproducibility.
The authors have nothing to disclose.
We thank the laboratory of Dr. Stephen Moss for providing embryonic rat brain tissues. M.D.T. designed the original protocol. This work was funded by National Institutes of Health P41 Tissue Engineering Resource Center Grant EB002520. K.C. was supported with Postdoctoral Fellowship from German Research Foundation (DFG) (CH 1400/2-1).
Na2CO3 | Sigma-Aldrich | 223530 | – |
LiBr | Sigma-Aldrich | 213225 | – |
MWCO 3500 dialysis cassettes | Thermo Fisher | 66110 | – |
Heating plate | Fisher Scientific | Isotemp | – |
Centrifuge 5804 R | Eppendorf | – | – |
Sieve | Fisher Scientific | – | No. 270, No. 35, No. 30 |
PTFE mold | – | – | made in house (Figure 1) 10 cm diameter, 2 cm height |
NaCl | Sigma-Aldrich | 71382 | – |
Biopsy Punch 5mm | World Precision Instrument | 501909 | – |
Biopsy Punch 2mm | World Precision Instrument | 501908 | – |
poly-D-lysine | Sigma-Aldrich | P6407-5MG | final concentration 10 ug/ml, dissolved in water |
PBS | Sigma-Aldrich | D1283-500ML | – |
Trypsin | Sigma-Aldrich | T4049-500ML | – |
DNase | Roche | 10104159001 | final concentration 0.3% |
Soybean protein | Sigma-Aldrich | T6522-100MG | final concentration 1 mg/ml |
Neurobasal medium | Gibco | 21103049 | warm up to 37°C before use |
B27 supplement 50x | Gibco | 17504-044 | – |
Glutamax | Gibco | 35050-061 | – |
Penicilin Streptomycin | Corning | 30-002-CI | – |
Collagen I, rat tail, 100 mg | Corning | 354236 | final concentration 3 mg/ml |
NaOH | Sigma-Aldrich | S2770 | corrosive |
Propidium Iodide | Sigma-Aldrich | P4170-10MG | toxic |
Fluorescein Diacetate | Sigma-Aldrich | F7378-5G | – |
Olympus MVX10 | Olympus | – | – |
Paraformaldehyde | Sigma-Aldrich | P6148 | toxic, final concentration 4% |
Bovine Serum Albumin | Sigma-Aldrich | A7906-10G | – |
anti-βIIITubulin antibody | Sigma-Aldrich | T2200 | rabbit 1:500 |
anti-rabbit Alexa-546 | Molecular Probes | A11010 | goat 1:250 |
goat serum | Sigma-Aldrich | G9023-5ML | – |
Leica SP2 confocal microscope | Leica | – | objective 20x |
QIAshredder | Qiagen | 79654 | – |
AllPrep DNA/RNA/Protein Mini Kit | Qiagen | 80004 | – |
Ethyl alcohol, Pure | Sigma-Aldrich | E7023 | – |
2-Mercaptoethanol | Sigma-Aldrich | 63689 | |
NanoDrop 2000c/2000 UV-Vis Spectrophotometer | Thermo Scientific | – | – |
BCA protein assay | Thermo Scientific | 23225 | – |
Plate reader Spectramax M2 | Molecular Devices | – | absorbance 562 nm |
Micro Scissors, Economy, Vannas-type | TedPella | 1346 | – |