The enteric nervous system (ENS) is a network of neurons and glia located in the gut wall that controls intestinal reflexes. This protocol describes methods for recording the activity of enteric neurons and glia in live preparations of ENS using Ca2+ imaging.
Reflex behaviors of the intestine are controlled by the enteric nervous system (ENS). The ENS is an integrative network of neurons and glia in two ganglionated plexuses housed in the gut wall. Enteric neurons and enteric glia are the only cell types within the enteric ganglia. The activity of enteric neurons and glia is responsible for coordinating intestinal functions. This protocol describes methods for observing the activity of neurons and glia within the intact ENS by imaging intracellular calcium (Ca2+) transients with fluorescent indicator dyes. Our technical discussion focuses on methods for Ca2+ imaging in whole-mount preparations of the myenteric plexus from the rodent bowel. Bulk loading of ENS whole-mounts with a high-affinity Ca2+ indicator such as Fluo-4 permits measurements of Ca2+ responses in individual neurons or glial cells. These responses can be evoked repeatedly and reliably, which permits quantitative studies using pharmacological tools. Ca2+ responses in cells of the ENS are recorded using a fluorescence microscope equipped with a cooled charge-coupled device (CCD) camera. Fluorescence measurements obtained using Ca2+ imaging in whole-mount preparations offer a straightforward means of characterizing the mechanisms and potential functional consequences of Ca2+ responses in enteric neurons and glial cells.
وينظم الجهاز العصبي المعوي (ENS) إلى قسمين الضفائر عقدي جزءا لا يتجزأ من داخل جدار الجهاز الهضمي 1. هذه الدوائر العصبية في العضل، الضفيرة العضلية المعوية (MP) والضفيرة تحت المخاطية (SMP)، وتتكون من الخلايا العصبية والدبقية المعوية (الشكل 1) (2). النائب وSMP تنظيم الجهاز الهضمي (GI) وظائف مثل حركية الأمعاء وامتصاص الظهارية وإفراز، على التوالي 3. وتقع الدبقية المعوية على مقربة من الخلايا العصبية في العقد ولكن سكان الدبقية المعوية موجودة أيضا في ربط مساحات الألياف وأجزاء خارج العقدية من جدار الأمعاء 3،4. ويعتقد الدبقية المعوية في الأصل لتقديم الدعم المغذي فقط إلى الخلايا العصبية. ومع ذلك، الدراسات الحديثة تشير بقوة إلى أن التفاعلات العصبية، الدبقية ضرورية لENS يعمل 5،6. على سبيل المثال، تشير البيانات إلى أن الدبقية المعوية "الاستماع" إلى نشاط الخلايا العصبية 7وتعدل الدوائر العصبية 6،8، وحماية الخلايا العصبية المعوية من الاكسدة 9 وتكون قادرة على توليد الخلايا العصبية المعوية جديدة استجابة للإصابة 10،11. بروتوكول الواردة في هذا الاستعراض التقني يوفر طريقة بسيطة وقوية لدراسة تفاعل معقد بين الخلايا العصبية والدبقية المعوية باستخدام في الموقع الكالسيوم داخل الخلايا 2+ التصوير.
كاليفورنيا 2+ هو جزيء إشارة في كل مكان في الخلايا منفعل ويلعب دورا أساسيا في الأحداث يشير متشابك في الجهاز العصبي 12. الإثارة من الخلايا العصبية أو الدبقية المعوية يتسبب إرتفاع في هيولي تركيز الكالسيوم 2+ إما عن طريق تدفق الكالسيوم من خلال قنوات 2+ -permeable أو الكالسيوم 2+ إطلاق سراح من مخازن الكالسيوم داخل الخلايا. التصوير كاليفورنيا 2+ العابرين في الخلايا العصبية والدبقية مع الأصباغ الفلورية وثابتة والتقنية المستخدمة على نطاق واسع لدراسة التنظيم الوظيفي وديناميكيةفي 13-17 ENS. وقد تبين التصوير كاليفورنيا 2+ أن تكون أداة هامة في دراسة سليمة شرائح الأنسجة GI لتوضيح انتشار استثارة من خلال شبكات تنظيم ضربات القلب المحكمة الجنائية الدولية 18 والأمعاء العضلات الملساء 19،20. وهي تمكن الباحثين للتحقيق في طيف واسع من المعلمات الفسيولوجية ويقدم معلومات عن كل من توزيعها المكاني والزماني ديناميات. الخلايا يمكن أن تكون ملطخة بكفاءة بطريقة الغازية الحد الأدنى باستخدام مؤشرات الفلورسنت نفاذية الغشاء والبروتوكولات تلطيخ الأمثل 21. هذا يتيح الفرصة لمراقبة عدد كبير من الخلايا العصبية والدبقية المعوية في الأعمال التحضيرية الحفاظ عليها وظيفيا 14-16،22، وكذلك في الجسم الحي 23. جبل كامل الاستعدادات الأنسجة هي الأكبر محملة عالية تقارب الكالسيوم 2+ مؤشر صبغ مثل فلوو-4 الذي يزيد مضان لها عندما بد أن الكالسيوم 2+. يتم تسجيل التغيرات في مضان بواسطة كاميرا CCD وآناlyzed رقميا 6. قدم ظهور الكالسيوم 2+ الفرصة لمراقبة الخلايا العصبية والخلايا الدبقية التفاعلات، والاستجابة لمختلف المحفزات، وإشراك أنواع الخلايا هذه في عمليات الجهاز الهضمي في الوقت الحقيقي.
في الموقع قد حقق التصوير الكالسيوم 2+ بصيرة آليات الإشارات من الخلايا العصبية المعوية والدبقية وتمتلك عدة مزايا واضحة على نماذج ثقافة الخلية 6،24. أولا، في الموقع استعدادات المحافظة على البيئة مصفوفة الأم من الخلايا العصبية والدبقية وترك الجزء الأكبر من صلاتهم لاستهداف الأنسجة سليمة. وثانيا، فإن علم الوراثة ومورفولوجية الدبقية المعوية مثقف وبشكل ملحوظ مقارنة اختلف في الجسم الحي 6،24. ثالثا، يتم فقدان كثير من التفاعلات غيروي في زراعة الخلايا الأولية وهذه حدود تقييم التفاعلات خلية خلية. على الرغم من أن الخلايا المستزرعة هي مناسبة تماما للتحقيق في الخصائص الأساسية، usefulne بهمSS لدراسة التفاعلات المعقدة بين الدبقية المعوية والخلايا العصبية محدودة. التحقيق تفاعل الخلايا العصبية، الدبقية باستخدام نهج في الموقع أكثر من الناحية الفسيولوجية ذات الصلة كما تبقى مسارات متشابك سليمة 25. بالمقارنة مع النهج ثقافة الخلية، وهو نهج الموقعي في تقدم وتحسن الظروف لفهم منهجي التفاعلات المعقدة بين الخلايا العصبية والدبقية المعوية. وعلاوة على ذلك، فإن المنظمة مستو من الضفيرة عقدي في الاستعدادات الكاملة جبل مثالية للتصوير الفلورسنت من الكالسيوم داخل الخلايا 2+ العابرين ويوفر هذا الأسلوب نهجا واضحة لتقييم نشاط الخلايا العصبية الدبقية في ENS.
The methodologies described in this manuscript provide a consistent approach to effectively study neurons and enteric glia in the ENS. Although imaging neurons and enteric glia in culture has yielded a wealth of insight into the function of individual cells, studying these cells in their native, multi-cellular environment is crucial for our understanding their physiology and pathophysiology. Fluorescence microscopy is a crucial technique for assessing multidirectional interactions of cells in the ENS. Loading cells of the ENS with selective fluorescent markers and image acquisition with high-resolution microscopy permits quantitative observations of cellular activity in the ENS. Imaging live tissue samples of the ENS is performed relatively quickly and generates large amounts of in-depth functional and spatial data. Mouse myenteric and submucosal plexus preparations used in these experiments allow for molecular and genetic manipulation approaches. Ca2+ imaging in whole-mount preparations provides a useful tool for the assessment of neuron-glia interactions.
In advanced experimental paradigms, several probes can be combined to obtain information about different events within the cells. Fluorescence microscopy can record images with enhanced contrast of specific molecules, if an appropriate fluorescent label is used. Fluo-4 was chosen because it possesses a large dynamic range. Sufficient incubation time is vital when using the AM dyes in ENS. Dye concentration and loading method may need to be adjusted to achieve best results. Ideal preparations should be loaded with sufficient dye to visualize changes in fluorescence but not so much so that the dye chelates the target ions and interferes with intracellular signaling. Exposure to fluorescent light should be limited to prevent phototoxicity in cells and photobleaching of dyes.
Investigators must be careful with several steps of this experiment, especially solution and tissue preparation. Particular care has to be taken during processing and dissection of ENS tissue in order to maintain cellular functions. The GI tract contains several layers and tissue varieties, which pose challenges for dissection and imaging quality in these whole-mount preparations 27. Furthermore, the interconnecting fiber tracts of the MP are wider and ganglia are larger than those of the SMP 2. The neuronal density of the myenteric plexus is higher compared to that of the submucosal plexus 28. Slow and imprecise dissections will have detrimental effects on the quality of the plexus preparations and thus the overall success of the experiments. Therefore, clean/undamaged tools, practice and manual dexterity are critical to this procedure.
In whole-mount tissue preparations, careful consideration should be taken when drawing the regions of interest (ROI) to correctly assess the kinetics and degree of observed change in fluorescence intensity of the desired cell type. As the ganglia are located on a contractile muscle layer, motion artifacts caused by gut motility are a primary concern during in situ imaging. Thus, suppressing these motion disturbances through re-pinning tissue preparations after incubation with enzymes and the addition of pharmacological inhibition (nicardipine/scopolamine) to buffers permits clear and reliable image acquisition. Aside from pharmacology and mechanical approaches to prevent tissue movement, recent studies illustrate the application of advanced software methodologies and cell type response characteristics to correct for residual tissue movement in the recordings and improve the accuracy of analysis 29. Barring these technical hurdles, this method provides physiologically relevant conditions to assess morphologic and quantitative characteristics of neurons and enteric glia in the ENS.
The authors have nothing to disclose.
This work was supported by grants from the Pharmaceutical Research and Manufacturers Association of America (PhRMA) Foundation (to B. Gulbransen), National Institutes of Health (Building Interdisciplinary Research Careers in Women’s Health) grant K12 HD065879 (B. Gulbransen) and start-up funds from Michigan State University (B. Gulbransen).
Name | Company | Catalog Number |
BubbleStop Syringe Heater | AutoMate Scientific | 10-4-35-G |
CaCl2 | Sigma | C3306 |
Collagenase, Type II, powder | Gibco | 17101-015 |
Dispase | Sigma-Aldrich | 42613-33-2 |
Dissection tools | Roboz | |
DMSO | Sigma-Aldrich | D5879 |
Fixed-stage microscope | Olympus | BX51WI |
Fluo-4 AM dye | Invitrogen | F-14201 |
Glucose | Sigma | G8270 |
Insect pins | Fine Science Tools | Minutien Pins |
iQ Live Cell Imaging Software | Andor | Andor iQ3 |
KCl | Sigma | P3911 |
MgCl2 | Sigma | M9272 |
NaCl | Sigma | S9888 |
NaH2PO4 | Sigma | S8282 |
NaHCO3 | Sigma | S6014 |
Neo sCMOS camera | Andor | Neo 5.5 sCMOS |
Nicardipine | Sigma | N7510 |
Perfusion chamber | Custom | |
Peristaltic pump | Harvard Apparatus | Model 720 |
Pluronic F-127 | Invitrogen | P3000MP |
Probenecid | Molecular Probes | P36400 |
Scopolamine | Sigma | S1013 |
Sutter Lambda DG-4 | Sutter | DG-4 |
Sylgard | Dow Corning | 184 |
Temperature Controller | Warner Instruments | TC-344C |