The enteric nervous system (ENS) is a network of neurons and glia located in the gut wall that controls intestinal reflexes. This protocol describes methods for recording the activity of enteric neurons and glia in live preparations of ENS using Ca2+ imaging.
Reflex behaviors of the intestine are controlled by the enteric nervous system (ENS). The ENS is an integrative network of neurons and glia in two ganglionated plexuses housed in the gut wall. Enteric neurons and enteric glia are the only cell types within the enteric ganglia. The activity of enteric neurons and glia is responsible for coordinating intestinal functions. This protocol describes methods for observing the activity of neurons and glia within the intact ENS by imaging intracellular calcium (Ca2+) transients with fluorescent indicator dyes. Our technical discussion focuses on methods for Ca2+ imaging in whole-mount preparations of the myenteric plexus from the rodent bowel. Bulk loading of ENS whole-mounts with a high-affinity Ca2+ indicator such as Fluo-4 permits measurements of Ca2+ responses in individual neurons or glial cells. These responses can be evoked repeatedly and reliably, which permits quantitative studies using pharmacological tools. Ca2+ responses in cells of the ENS are recorded using a fluorescence microscope equipped with a cooled charge-coupled device (CCD) camera. Fluorescence measurements obtained using Ca2+ imaging in whole-mount preparations offer a straightforward means of characterizing the mechanisms and potential functional consequences of Ca2+ responses in enteric neurons and glial cells.
肠神经系统(ENS)被组织成嵌入消化道1的壁内的两个神经节丛。这些肌肉的神经回路中,肠肌丛(MP)和粘膜下丛(SMP),是由神经元和神经胶质肠溶( 图1)2。在MP和SMP调节胃肠(GI)功能,例如肠能动性和上皮的吸收和分泌,分别为3。肠溶胶质位于靠近内神经节的神经元,但肠溶胶质细胞种群内互连纤维束和肠壁3,4的外神经节部也存在。肠神经胶质细胞原本被认为只提供给神经元营养支持。然而,最近的研究有力地表明,神经元的神经胶质细胞的相互作用是必不可少的ENS功能5,6。例如,数据显示,肠溶胶质“收听”神经元活动7和调节神经元电路6,8,保护肠神经元免受氧化应激9,并且能够响应于损伤10,11产生新的肠神经元的。在此技术审查提出的协议提供了一种简单而可靠的方法来检查使用原位细胞内Ca 2+成像的神经元和神经胶质肠溶之间复杂的相互作用。
钙离子是在可兴奋细胞中普遍存在的信号分子,并起着突触信号事件在神经系统12中起重要作用。神经元或神经胶质细胞肠道激发无论是通过大量涌入的Ca 2+ -permeable通道或钙诱发细胞质中钙离子浓度的升高,从细胞内钙库离子释放 。成像钙瞬变的神经元和神经胶质细胞与荧光染料是既定的和广泛使用的技术,研究功能组织和动态在ENS 13-17。的Ca 2+成像已经被证明是在研究完整的GI组织片段通过ICC起搏器网络18和肠平滑肌19,20阐明兴奋性传播的重要工具。它使研究人员能够探测生理参数的广谱,并提供有关他们俩的空间分布和时空动态的信息。细胞可以通过使用膜可渗透荧光指标和优化的染色方案21被有效地染色以微创方式。这提供了机会,以监视大量的神经元和神经胶质肠溶在功能上保留制剂14-16,22,以及在体内 23。整个安装组织标本是散装装载有高亲和力的Ca 2+指示剂染料如荧光4当结合的Ca 2+,增加其荧光。变化的荧光用CCD照相机和ANA记录裂解数字6。钙离子的出现提供了机会以监测神经元和神经胶质细胞的相互作用,响应于各种刺激,而这些细胞类型的胃肠道的过程中实时的参与。
在原位 钙成像已经取得了巨大的洞察肠道神经元和神经胶质细胞的信号传导机制和过细胞培养模型6,24具有几个明显的优势。首先, 在原地准备维持神经元和神经胶质细胞的原生基质环境,让他们的大部分连接到靶组织完好无损。二,遗传学和培养肠道神经胶质细胞的形态是显著已发生变化相比, 在体内 6,24。第三,许多异型相互作用丢失在原代细胞培养,这限制评估细胞 – 细胞相互作用。虽然培养细胞非常适合于调查基本性质,它们的usefulneSS学习肠神经胶质细胞和神经元之间复杂的相互作用是有限的。使用原位方法研究神经元的神经胶质细胞相互作用更生理有关的突触途径保持不变25。相比于细胞培养方法, 原位方法提供了改进的条件,系统地了解神经元和神经胶质细胞肠道之间错综复杂的相互作用。此外,在整个安装制剂的神经节丛的平面组织是理想的细胞内Ca 2+瞬变的荧光成像和该技术提供了用于评估在ENS神经元-神经胶质细胞活性的简单的方法。
The methodologies described in this manuscript provide a consistent approach to effectively study neurons and enteric glia in the ENS. Although imaging neurons and enteric glia in culture has yielded a wealth of insight into the function of individual cells, studying these cells in their native, multi-cellular environment is crucial for our understanding their physiology and pathophysiology. Fluorescence microscopy is a crucial technique for assessing multidirectional interactions of cells in the ENS. Loading cells of the ENS with selective fluorescent markers and image acquisition with high-resolution microscopy permits quantitative observations of cellular activity in the ENS. Imaging live tissue samples of the ENS is performed relatively quickly and generates large amounts of in-depth functional and spatial data. Mouse myenteric and submucosal plexus preparations used in these experiments allow for molecular and genetic manipulation approaches. Ca2+ imaging in whole-mount preparations provides a useful tool for the assessment of neuron-glia interactions.
In advanced experimental paradigms, several probes can be combined to obtain information about different events within the cells. Fluorescence microscopy can record images with enhanced contrast of specific molecules, if an appropriate fluorescent label is used. Fluo-4 was chosen because it possesses a large dynamic range. Sufficient incubation time is vital when using the AM dyes in ENS. Dye concentration and loading method may need to be adjusted to achieve best results. Ideal preparations should be loaded with sufficient dye to visualize changes in fluorescence but not so much so that the dye chelates the target ions and interferes with intracellular signaling. Exposure to fluorescent light should be limited to prevent phototoxicity in cells and photobleaching of dyes.
Investigators must be careful with several steps of this experiment, especially solution and tissue preparation. Particular care has to be taken during processing and dissection of ENS tissue in order to maintain cellular functions. The GI tract contains several layers and tissue varieties, which pose challenges for dissection and imaging quality in these whole-mount preparations 27. Furthermore, the interconnecting fiber tracts of the MP are wider and ganglia are larger than those of the SMP 2. The neuronal density of the myenteric plexus is higher compared to that of the submucosal plexus 28. Slow and imprecise dissections will have detrimental effects on the quality of the plexus preparations and thus the overall success of the experiments. Therefore, clean/undamaged tools, practice and manual dexterity are critical to this procedure.
In whole-mount tissue preparations, careful consideration should be taken when drawing the regions of interest (ROI) to correctly assess the kinetics and degree of observed change in fluorescence intensity of the desired cell type. As the ganglia are located on a contractile muscle layer, motion artifacts caused by gut motility are a primary concern during in situ imaging. Thus, suppressing these motion disturbances through re-pinning tissue preparations after incubation with enzymes and the addition of pharmacological inhibition (nicardipine/scopolamine) to buffers permits clear and reliable image acquisition. Aside from pharmacology and mechanical approaches to prevent tissue movement, recent studies illustrate the application of advanced software methodologies and cell type response characteristics to correct for residual tissue movement in the recordings and improve the accuracy of analysis 29. Barring these technical hurdles, this method provides physiologically relevant conditions to assess morphologic and quantitative characteristics of neurons and enteric glia in the ENS.
The authors have nothing to disclose.
This work was supported by grants from the Pharmaceutical Research and Manufacturers Association of America (PhRMA) Foundation (to B. Gulbransen), National Institutes of Health (Building Interdisciplinary Research Careers in Women’s Health) grant K12 HD065879 (B. Gulbransen) and start-up funds from Michigan State University (B. Gulbransen).
Name | Company | Catalog Number |
BubbleStop Syringe Heater | AutoMate Scientific | 10-4-35-G |
CaCl2 | Sigma | C3306 |
Collagenase, Type II, powder | Gibco | 17101-015 |
Dispase | Sigma-Aldrich | 42613-33-2 |
Dissection tools | Roboz | |
DMSO | Sigma-Aldrich | D5879 |
Fixed-stage microscope | Olympus | BX51WI |
Fluo-4 AM dye | Invitrogen | F-14201 |
Glucose | Sigma | G8270 |
Insect pins | Fine Science Tools | Minutien Pins |
iQ Live Cell Imaging Software | Andor | Andor iQ3 |
KCl | Sigma | P3911 |
MgCl2 | Sigma | M9272 |
NaCl | Sigma | S9888 |
NaH2PO4 | Sigma | S8282 |
NaHCO3 | Sigma | S6014 |
Neo sCMOS camera | Andor | Neo 5.5 sCMOS |
Nicardipine | Sigma | N7510 |
Perfusion chamber | Custom | |
Peristaltic pump | Harvard Apparatus | Model 720 |
Pluronic F-127 | Invitrogen | P3000MP |
Probenecid | Molecular Probes | P36400 |
Scopolamine | Sigma | S1013 |
Sutter Lambda DG-4 | Sutter | DG-4 |
Sylgard | Dow Corning | 184 |
Temperature Controller | Warner Instruments | TC-344C |