DNA origami is a powerful method for fabricating precise nanoscale objects by programming the self-assembly of DNA molecules. Here we describe a protocol for the folding of a bio-responsive robot from DNA origami, its purification and negative staining for transmission electron microscopic imaging (TEM).
Die DNA-Nanoroboter ist eine hohle hexagonale Nanometereinrichtung, entworfen, um als Reaktion auf bestimmte Reize und Gegenwart Fracht innerhalb abgesondert zu öffnen. Beide Reize und Ladung kann nach spezifischen Bedürfnisse zugeschnitten werden. Hier beschreiben wir die DNA Nanoroboters Herstellungsprotokoll, wobei die Verwendung des DNA-Origamitechnik. Das Verfahren startet, indem man kurze einsträngige DNA von Klammern in einer Stammischung, der dann in Gegenwart eines Faltungspuffer zu einem langen, kreisförmigen, einsträngigen DNA-Gerüst aufgenommen. Ein Standard-Thermocycler so programmiert ist, allmählich gesenkt werden das Mischen der Reaktionstemperatur, um die Klammern zu Gerüstglühen, die die treibende Kraft hinter der Faltung des Nanoroboters ist erleichtern. Sobald die 60 h Faltungsreaktion vollständig ist, werden die überzähligen Klammern unter Verwendung einer Filterzentrifuge, gefolgt von Visualisierung über Agarose-Gelelektrophorese (AGE) verworfen. Schließlich wird erfolgreiche Herstellung des Nanoroboters durch Transmissionselektronenmikroskopie (TEM) überprüft wird,mit der Verwendung von Uranyl-Formiat als negative Färbung.
Die Einsatzmöglichkeiten für Nukleinsäuren Nanotechnologie sind erstaunlich. Die Lenkbarkeit des Watson-Crick-Basenpaarung sowie die einfache und relativ kostengünstige großtechnische Synthese von maßgeschneiderten Oligos 2 hat eine Explosion von Anwendungen 3 und Forschung auf dem Gebiet der DNA-Nanotechnologie erzeugt. Strukturelle DNA Nanotechnologie, bezogen auf das immobile Seeman Kreuzung 4,5 als grundlegender Baustein macht Verwendung von DNA als eine selbstorganisierende Elementareinheit für die Konstruktion von beliebigen Formen 6-8.
Die jüngste Entwicklung der rüstet DNA-Origami-9-Technik ermöglicht die Konstruktion von komplexen 2D- / 3D-Nanoarchitekturen 10-12 mit Sub-Nanometer Präzision und ist ein effizienter Weg für den Bau neuer funktionale Objekte mit zunehmender Komplexität und erstaunliche Vielfalt. Der Bauprozess wird auf eine lange Gerüsteinzelstrang-DNA basiert, in der Regel von einem viralen Genom abgeleitete, der durch die Hybridisierung von Hunderten von kurzen Einzelstrang-DNA-Oligos gefaltet werden kann bezeichnet Heftklammern. Die hohe Strukturauflösung durch diese Technik erhalten ist das direkte Ergebnis der natürlichen Dimensionen der DNA-Doppelhelix, während die Reproduzierbarkeit der Herstellung ist das Ergebnis der Anpassung der kurzen Einzelstrang-Stapelsequenzen, um die maximale Wasserstoffbrücken Komplementarität erreichbar zu erleichtern. Mit dem Einsatz von einem langsamen Temperaturglühen Rampe die entworfen niedrigsten Energie, in hohen Ausbeuten und Treue thermodynamisch bevorzugte Nanostruktur erreicht wird. Die einfache Umsetzung der Kreuzung Design-Regeln in einem Computercode aktiviert die Entwicklung von CAD-Tools, wie caDNAno 13, die extrem vereinfachen die Aufgabe der Gestaltung großer, komplexer Strukturen, die Hunderte von Übergängen verbunden.
Zuvor beschrieben wir die Konstruktion eines DNA-Nanoroboter mit Hilfe des caDNAno Werkzeug 14,15. Die Herstellung Hier zeigen wir, undVisualisierung, über Transmissionselektronenmikroskopie (TEM), der Nanoroboter, einem 3D hohlen sechseckigen Nanovorrichtung, mit den Abmessungen von 35 x 35 x 50 nm 3, entworfen, um eine große Konformationsänderung in Reaktion auf eine vorbestimmte Stimuli und Gegenwart spezifische Ladung, unterzogen werden wie wie Proteine oder Nukleinsäure-Oligos, abgesondert innen. Während 12 Verladestationen stehen innerhalb der hohlen Gehäuse, die tatsächliche Anzahl der gebundenen Ladung unterscheidet mit Ladung groß. Cargomoleküle reichen von kleinen DNA-Moleküle, Enzyme, Antikörper und 5-10 nm Goldnanopartikel. Cargocan entweder einheitlich oder heterogen, so dass jedes Nanoroboters enthält ein Gemisch aus verschiedenen Molekülen. Sensor ist über zwei Doppelschräg Sperriegel Design entweder aptasensor 16,17 oder DNA-Strang-Verdrängungs-18-Technologien erreicht werden, um Proteine, Nukleinsäuren oder andere Chemikalien zu erfassen, beruht. Jüngste Entwicklungen in der Aptamer Selektionsprotokolle 19-21 ermöglichen die Gestaltung von Nanoroboter reagiertzu einer ständig wachsenden Palette von Molekülen und Zelltypen.
Frühere Arbeiten zeigten eine Nanoroboter, der einen spezifischen Antikörper, der nach der Bindung an sein Antigen kann entweder eine hemmende oder ein produktiver Signal an der Innenseite von spezifischen Zelltypen in einer gemischten Zellpopulation 15 weiterzuleiten. Eine spannende Merkmal dieser Nanomaschinen ist ihre Fähigkeit, auch komplexere Aufgaben und Logic-Control mit der Einführung von verschiedenen Nanorobotik-Subtypen in einer einzigen Population durchzuführen. Kurzem zeigten wir bestimmte Subtypen von Nanoroboter Führen entweder positive oder negative Regulatoren, Steuern eines Effektorpopulation enthaltend einen aktiven Frachtmoleküls 22.
Die hier vorgestellte Protokoll beschreibt die Herstellung, Reinigung und Bildgebung eines Nanoroboter mit Aptamer-Sensor-Sequenzen, die selektiv an PDGF binden, um die Öffnung der Nanorobotik 15,22 erleichtern gated. Das beschriebene Herstellungsverfahren ist ähnlich dem nanorobot Herstellungsverfahren zunächst von Douglas et al. 15 mit Änderungen zur Verringerung der Gesamtprozessdauer ausgerichtet dargestellt, während die Erhöhung der Ausbeute und Reinigungsraten.
Wir beschrieben die Herstellung, Reinigung und Visualisierung der DNA-Nanoroboter. Nach der Herstellung des hexagonalen Chassis der Vorrichtung wird die Funktion des Nanoroboters mit der einfachen Einführung spezifischer Ladung und Erfassen Stränge an den Roboter, die leicht zu finden ihre bestimmten Position aufgrund von Wasserstoffbrücken Komplementarität vorhanden einsträngigen Andockstellen 14 programmiert , 15,22.
Die beschriebenen Herstellungsprotokoll verwen…
The authors have nothing to disclose.
Die Autoren danken S. Douglas für äußerst wertvolle Diskussionen und Beratung, und alle Mitglieder der Bachelet Labor für hilfreiche Diskussionen und Arbeit danken. Diese Arbeit wird durch Zuschüsse von der Fakultät für Lebenswissenschaften und Institut für Nanotechnologie und Neue Materialien an der Bar-Ilan-Universität unterstützt.
DNase/RNase free distilled water | Gibco | 10977 |
M13mp18 ssDNA scaffold | NEB | N4040S |
10x TAE | Gibco | 15558-042 |
1 M MgCl2 | Ambion | AM9530G |
Amicon Ultra 0.5 mL centrifugal filter 100K MWCO | Amicon | UFC510024 |
Agarose | Promega | V3125 |
TBE buffer | Promega | V4251 |
Ethidium bromide 10mg/ml solution | Sigma Aldrich | E1510 |
1 kb DNA marker | NEB | N3232S |
Loading Dye | NEB | B7021S |
uranyl formate | polysciences | 24762 |
carbon-coated TEM grids | Science services | EFCF400-Cu-50 |
Thermal Cycler c1000 Touch | Bio-Rad | |
Glow Discharge K100X | Emitech | |
UV table Gel Doc EZ Imager | Bio-Rad | |
NanoDrop 2000c | Thermo Scientific | |
TEM FEI-G12 | Tecnai |