Özet

隔离和肉毒杆菌神经毒素定量从复杂的基质使用BoTest矩阵测定

Published: March 03, 2014
doi:

Özet

该BoTest矩阵A型肉毒毒素(肉毒毒素)检测方法快速净化,并从各种样品基质的量化肉毒毒素。在这里,我们提出了一个协议,用于肉毒毒素,从固体和液体基质的检测和定量,并证明有肉毒杆菌,番茄,牛奶的检测。

Abstract

准确的检测和肉毒杆菌神经毒素(肉毒毒素)对复杂基质中的量化是必需的药品,环境和食物样本测试。期间爆发取证,病人的诊断,食品安全检测是必要的食品快速检测肉毒毒素准确而有力测试是必需的肉毒毒素为基础的药物产品制造和病人安全。被广泛使用的小鼠生物法进行肉毒毒素测试是高度敏感,但缺乏必要的快速和常规检测肉毒毒素的精度和吞吐量。此外,生物测定的使用动物导致了药品监管部门和动物权利支持者在美国和国外的电话,以取代小鼠生物法进行肉毒毒素测试。几种体外测定法更换已开发工作以及与纯化的肉毒毒素在简单缓冲器,但大部分都没有被证明是适用于检测在高度复杂的矩阵。这里,一个协议,用于检测肉毒毒素在使用BoTest矩阵分析复杂基质中呈现。该测定由三部分组成:第一部分涉及制备样品进行测试的,第二部分是使用抗肉毒毒素抗体包被的顺磁珠从基质纯化肉毒毒素免疫沉淀步骤,和第三部分量化了孤立的BoNT的蛋白水解活动采用荧光记者。该协议是用于高通量试验在96孔板上使用液体和固体的矩阵写入,并且需要大约2个小时手工制备具有4-26小时的总的分析时间取决于样品的类型,毒素负载和所需的灵敏度。数据表示为用磷酸缓冲盐水中,药物产品,培养物上清液,2%牛奶,鲜番茄的BoNT / A的测试,并且包括用于检测成功的关键参数的讨论。

Introduction

肉毒杆菌神经毒素毒素(BoNTs)是已知的最致命的物质,估计在1-3纳克静注人致死剂量/公斤1,2。七结构相似的肉毒毒素血清型,至G标记为A,存在,每个由负责细胞结合,摄取和易位到细胞质和轻链编码一种锌内肽酶3-5的重链结构域。肉毒毒素的毒性精美的结果,在某种程度上,在神经肌肉接头6的特异性结合并进入运动神经元。神经元一旦进入,所述轻链肽酶特异性切割1的可溶性N-乙基马来酰亚胺-敏感因子附着蛋白受体(SNARE)所需的囊泡融合蛋白的一个或多个,抑制神经递质的释放,并导致弛缓性麻痹7-14。俗称疾病“肉毒杆菌”的膈肌和肋间肌由肉毒毒素麻痹,最终导致呼吸衰竭而死亡,除非早期诊断和治疗被接收。

人类食源性肉毒中毒是最常见的肉毒毒素血清型A,B,E关联,和F(肉毒毒素/ A,肉毒毒素/ B ),通常从污染的食物15,16摄入导致,虽然,伤口肉毒中毒的几种情况据报道其中静脉吸毒者17,18。在美国,从梭状芽孢杆菌孢子的一岁以下儿童的摄入导致婴儿肉毒中毒是肉毒杆菌19-21的最常见形式。然而,不当家罐头和食品加工产生的食源性肉毒毒素暴发的报道同时在美国和海外。与2000-2009年至少 ​​有338例食源性肉毒中毒的报道世界各地,包括六人死亡22。快速和灵敏地检测食源性肉毒中毒爆发的能力是可能帮助早期诊断的重要指标23,24。此外,检测方法,使成本效益和常规食品检测将导致改善粮食安全。

肉毒毒素的神经元特异性和长的生物半衰期也使得它成为有效的治疗。在美国,肉毒毒素类药物被美国食品与药物管理局的化妆品条件和神经肌肉有关的疾病,包括眉间纹,颈部肌张力障碍,偏头痛,膀胱过度活动症,以及斜视治疗通过。众多的“关闭标签”的应用被记录,包括高剂量治疗重症肌功能不全25-28。准确的毒素定量是正确的剂量至关重要,因为剂量不足可能导致治疗无效,而超剂量将患者置于潜在的有害副作用的风险。不幸的是,没有标准的效价测定的协议不同制造商之间共享,从而导致肉毒毒素为基础的药物机生产线设备之间的不平等定义仙29-31。

标准测试肉毒毒素是小鼠生物法,其中含肉毒毒素样品腹腔注射到小鼠和死亡的人数录得超过1-7天16,32,33。小鼠生物检测与检测5-10皮克的BoNT / A 34限(LOD)非常敏感,但道德问题了动物的使用,培养人才的成本高,维护动物的设施,长期的分析时间,而且缺乏标准化的协议导致的呼叫建立标准化,无动物肉毒毒素检测和定量方法35-39。最近,一些替代肉毒毒素定量方法的发展,提供鼠标或近小鼠生物检测的灵敏度40-49。这些方法通常使用的荧光,质谱,或免疫学方法,并提供检测时间比不使用动物的小鼠生物法大大缩短。质谱办法结合免疫techniq的UE却显示出了检测和量化的BoNT包含在食品和其他复杂的样品,但是,人员的培训要求,专门的设备限制这些测定50-55。大多数其他替代分析是不容易适用于复杂样品测试或缺乏所需的日常肉毒毒素测试的吞吐量。试图开发在体外试验方法的敏感性,以配合肉毒毒素的极端效力时的食品样品的粘度,pH值,含盐量和基质成分的高度可变的性质提出了一个特别困难的挑战。此外,即使是简单和相对良性的缓冲系统,如那些从肉毒毒素为基础的药物产品的再悬浮产生的,含有盐,白蛋白,糖和稳定剂( 赋形剂),该显著影响的体外效力的BoNT 56。毒素净化所需的所有准确的活性测试,但最简单的样品56-59的。

该BoTest矩阵分析被设计用于快速,高通量,和肉毒毒素的使用设备在研究实验室56,60通常发现高度复杂样品一致的定量。这些测定中使用的顺磁珠共价连接到血清型特异性抗肉毒毒素的抗体结合和隔离的BoNT出样品,然后除去洗涤干扰矩阵的化合物。洗涤后,肉毒毒素结合蛋白水解活性,然后量化使用的肉毒毒素血清型进行测试兼容记者优化的反应缓冲液。这些记者是荧光蛋白质组成的N-末端青色荧光蛋白(CFP)部分和C-末端的黄色荧光蛋白衍生物(金星)部分由一个基底的BoNT,SNAP25残基141-206或残基突触33-94相连构成的BoTest A / E或B / D / F / G记者,分别为45。记者裂解肉毒毒素是用福斯特共振能量转移(FRET)进行监测。当t他记者是完整的,CFP的激发导致FRET金星,淬火CFP排放和令人兴奋的金星发射。记者通过肉毒毒素的裂解防止荧光共振能量转移,导致增加CFP排放和减少排放的金星。肉毒毒素活性可再使用CFP和金星排放量的比例来定量测定。 LOD低于3皮克有可能从广泛的使用高通量的96孔板格式56的食品。更高的灵敏度可以使用更大的样本量来获得,因为试验允许在磁珠表面毒素的浓度。

对于BoNTs A,B,E和F的BoTest矩阵分析被开发,并与食品,制药,环境样品56,60测试。在这里,我们描述了执行这些分析的肉毒毒素在低复杂度的检测( 制药,肉毒毒素在缓 ​​冲液)和高复杂性( 食物,环境)的样本程序。具体的处理方法几个样品类型,将在本协议并在这里没有描述的样品类型通常可以使用的呈现方法的组合调整。该协议的开发和测试了肉毒毒素/ A,但适应于其他血清型肉毒毒素使用各自的试验为证明别处56,60。

Protocol

1。测定试剂的配制解冻200X二硫苏糖醇(DTT),10倍的基质结合缓冲液(10×结合缓冲液下同),10倍的中和缓冲液(食物或pH失衡样品只),和15分钟的10倍BoTest反应缓冲液(10X反应缓冲下同),在室温(RT)或直到完全解冻。 见表1为在此协议中使用的缓冲液和试剂的列表。请参阅表2的本议定书所需的材料和设备清单。 旋涡解冻缓冲5秒混匀。 10X和缓冲液,2…

Representative Results

的图表总结了在所描述的协议的步骤示于图2。 4-26小时之间的检测需要根据样品的类型和所需的检测灵敏度来完成,但只〜2小时的手工操作时间。该测定在96 – 孔板中进行,并根据所执行的测试的类型,允许多达20个样品,包括每盘标准的一式三份测试。 图3显示了使用肉毒毒素代表性的化验结果/ A全毒素飙升至PBS及与所描述的协议下2,4,和24小时?…

Discussion

本协议描述的量化肉毒毒素/一个复杂的,全毒素,或梭状芽孢杆菌培养上清复杂基质中的程序。该协议是一样的,但是,与他们各自的矩阵分析56,60测试其他血清型肉毒毒素( 肉毒毒素/ B,E和F)时,虽然检测灵敏度将跨越血清型和分析有所不同。这个协议没有考虑所有类型的样品的可能和一些修改可以根据具体的样品组合物和期望的应用是必需的。矩阵可以包括食物样?…

Açıklamalar

The authors have nothing to disclose.

Acknowledgements

作者要感谢H.奥利瓦雷斯和D如歌的有价值的讨论和建议。这项研究是由美国国家科学基金会一SBIR计划奖(IIP-1127245至BioSentinel Inc。)和美国国防部的合同(W81XWH-07-2-0045到BioSentinel公司)的部分资助。

Materials

BoTest Matrix A Botulinum Neurotoxin Detection Kit BioSentinel A1015 Detection kits for BoNT/B and F are also available.
Varioskan Flash fluorescence microplate reader Thermo-Fisher Scientific 5250040 Most monochromator- or filter-based units with 434 nm excitation and 470 and 526 nm emission capability can be used.
96-well Magnetic Bead Separation Plate V&P Scientific  VP771H Other magnetic plates may be used, but the plate should be designed to separate the beads to the side of the well.
Magnetic Bead-Compatible Plate Washer BioTek  ELx405 VSRM Optional, only required for automated plate washing.  Other magnetic bead-compatible plate washers may also be used, but should be tested before use.
Microcentrifuge Various N/A Optional, only required for samples needing centrifugation.
MixMate plate mixer Eppendorf 22674200
Orbital Shaker Various N/A Used at room temperature or at 25 °C If temperature control is available
EDTA-free Protease Inhibitor Tablets Roche 4693132001 Only required for food or environmental testing.  Protease inhibitors must be EDTA-free.
BoNT/A  Metabiologics N/A Optional, only required for standardization and quantification purposes 
Black, Flat-bottomed 96-well Plates NUNC 237105 Plates should not be treated
96-well Plate Sealing Tape Thermo Scientific 15036

Referanslar

  1. Arnon, S. S., et al. Botulinum toxin as a biological weapon: medical and public health management. J. Am. Med. Assoc. 285, 1059-1070 (2001).
  2. Gill, D. M. Bacterial toxins: a table of lethal amounts. Microbiol. Rev. 46, 86-94 (1982).
  3. Montal, M. Botulinum neurotoxin: a marvel of protein design. Annu. Rev. Biochem. 79, 591-617 (2010).
  4. Lacy, D. B., Stevens, R. C. Sequence homology and structural analysis of the clostridial neurotoxins. J. Mol. Biol. 291, 1091-1104 (1999).
  5. Montecucco, C., Schiavo, G. Structure and function of tetanus and botulinum neurotoxins. Q. Rev. Biophys. 28, 423-472 (1995).
  6. Ahnert-Hilger, G., Munster-Wandowski, A., Holtje, M. Synaptic vesicle proteins: targets and routes for botulinum neurotoxins. Curr. Top. Microbiol. Immunol. 364, 159-177 (2013).
  7. Yamasaki, S., et al. Cleavage of members of the synaptobrevin/VAMP family by types D and F botulinal neurotoxins and tetanus toxin. J. Biol. Chem. 269, 12764-12772 (1994).
  8. Schiavo, G., et al. Identification of the nerve terminal targets of botulinum neurotoxin serotypes A, D, and E. J. Biol. Chem. 268, 23784-23787 (1993).
  9. Schiavo, G., et al. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature. 359, 832-835 (1992).
  10. Schiavo, G., et al. Botulinum G neurotoxin cleaves VAMP/synaptobrevin at a single Ala-Ala peptide bond. J. Biol. Chem. 269, 20213-20216 (1994).
  11. Rossetto, O., et al. SNARE motif and neurotoxins. Nature. 372, 415-416 (1994).
  12. Montecucco, C., Schiavo, G. Mechanism of action of tetanus and botulinum neurotoxins. Mol. Microbiol. 13, 1-8 (1994).
  13. Blasi, J., et al. Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature. 365, 160-163 (1993).
  14. Blasi, J., et al. Botulinum neurotoxin C1 blocks neurotransmitter release by means of cleaving HPC-1/syntaxin. EMBO J. 12, 4821-4828 (1993).
  15. Cherington, M. Clinical spectrum of botulism. Muscle Nerve. 21, 701-710 (1998).
  16. Lindstrom, M., Korkeala, H. Laboratory diagnostics of botulism. Clin. Microbiol. Rev. 19, 298-314 (2006).
  17. Werner, S. B., Passaro, D., McGee, J., Schechter, R., Vugia, D. J. Wound botulism in California, 1951-1998: recent epidemic in heroin injectors. Clin. Infect. Dis. 31, 1018-1024 (2000).
  18. Passaro, D. J., Werner, S. B., McGee, J., MacKenzie, W. R., Vugia, D. J. Wound botulism associated with black tar heroin among injecting drug users. J. Am. Med. Assoc. 279, 859-863 (1998).
  19. Brook, I. Infant botulism. J. Perinatol. 27, 175-180 (2007).
  20. Arnon, S. S. Honey, infant botulism and the sudden infant death syndrome. West J. Med. 132, 58-59 (1980).
  21. Arnon, S. S. Infant botulism. Annu. Rev. Med. 31, 541-560 (1980).
  22. Peck, M. W., Stringer, S. C., Carter, A. T. Clostridium botulinum in the post-genomic era. Food Microbiol. 28, 183-191 (2011).
  23. Sharma, S. K., Whiting, R. C. Methods for detection of Clostridium botulinum toxin in foods. J. Food Prot. 68, 1256-1263 (2005).
  24. Sobel, J. Botulism. Clin. Infect. Dis. 41, 1167-1173 (2005).
  25. Chen, S. Clinical uses of botulinum neurotoxins: current indications, limitations and future developments. Toxins. 4, 913-939 (2012).
  26. Sinha, D., Karri, K., Arunkalaivanan, A. S. Applications of Botulinum toxin in urogynaecology. Eur. J. Obstet. Gynecol. Reprod. Biol. 133, 4-11 (2007).
  27. Dmochowski, R., Sand, P. K. Botulinum toxin A in the overactive bladder: current status and future directions. BJU Int. 99, 247-262 (2007).
  28. Benecke, R., Dressler, D. Botulinum toxin treatment of axial and cervical dystonia. Disabil. Rehabil. 29, 1769-1777 (2007).
  29. Hunt, T., Clarke, K. Potency evaluation of a formulated drug product containing 150-kd botulinum neurotoxin type A. Clin. Neuropharmacol. 32, 28-31 (2009).
  30. Marchetti, A., et al. Retrospective evaluation of the dose of Dysport and BOTOX in the management of cervical dystonia and blepharospasm the REAL DOSE study. Mov. Disord. 20, 937-944 (2005).
  31. Wohlfarth, K., Sycha, T., Ranoux, D., Naver, H., Caird, D. . Dose equivalence of two commercial preparations of botulinum neurotoxin type A: time for a reassessment. 25, 1573-1584 (2009).
  32. . AOAC International, Clostridium botulinum and its toxins in foods (method 977.26 section 17.7.01). , (2001).
  33. Schantz, E. J., Kautter, D. A. Microbiological methods: standardized assay for Clostridium botulinum toxins. J. AOAC. 61, 96-99 (1978).
  34. Ferreira, J. L. Comparison of amplified ELISA and mouse bioassay procedures for determination of botulinal toxins A, B, E, and F. J. AOAC. Int. 84, 85-88 (2001).
  35. . Directive 2003/15/EC of the European Parliament and of the Council. Official Journal of the European Union. , (2003).
  36. . Report on the ICCVAM-NICEATM/ECVAM Scientific Workshop on Alternative Methods to Refine, Reduce or Replace the Mouse LD50 Assay for Botulinum Toxin Testing. Report No. 08-6416, NIH. , (2008).
  37. Bitz, S. The botulinum neurotoxin LD50 test – problems and solutions. ALTEX. 27, 114-116 (2010).
  38. Balls, M. Replacing the animal testing of botulinum toxin: time to smooth out the wrinkles. Altern. Lab. Anim. 38, 1-2 (2010).
  39. Balls, M. Botulinum toxin testing in animals: the questions remain unanswered. Altern. Lab. Anim. 31, 611-615 (2003).
  40. Singh, A. K., Stanker, L. H., Sharma, S. K. Botulinum neurotoxin: where are we with detection technologies. Crit. Rev. Microbiol. 39, 43-56 (2013).
  41. Liu, Y. Y., Rigsby, P., Sesardic, D., Marks, J. D., Jones, R. G. A functional dual-coated (FDC) microtiter plate method to replace the botulinum toxin LD50 test. Anal. Biochem. 425, 28-35 (2012).
  42. Ouimet, T., Duquesnoy, S., Poras, H., Fournie-Zaluski, M. C., Roques, B. P. Comparison of Fluorigenic Peptide Substrates PL50, SNAPtide, and BoTest A/E for BoNT/A Detection and Quantification: Exosite Binding Confers High-Assay Sensitivity. J. Biomol. Screen. , (2013).
  43. Scotcher, M. C., Cheng, L. W., Stanker, L. H. Detection of botulinum neurotoxin serotype B at sub mouse LD(50) levels by a sandwich immunoassay and its application to toxin detection in milk. PLoS One. 5, (2010).
  44. Mason, J. T., Xu, L., Sheng, Z. M., O’Leary, T. J. A liposome-PCR assay for the ultrasensitive detection of biological toxins. Nat. Biotechnol. 24, 555-557 (2006).
  45. Ruge, D. R., et al. Detection of six serotypes of botulinum neurotoxin using fluorogenic reporters. Anal. Biochem. 411, 200-209 (2011).
  46. Hines, H. B., et al. Use of a recombinant fluorescent substrate with cleavage sites for all botulinum neurotoxins in high-throughput screening of natural product extracts for inhibitors of serotypes A, B, and E. Appl. Environ. Microbiol. 74, 653-659 (2008).
  47. Gilmore, M. A., et al. Depolarization after resonance energy transfer (DARET): a sensitive fluorescence-based assay for botulinum neurotoxin protease activity. Anal. Biochem. 413, 36-42 (2011).
  48. Capek, P., Dickerson, T. J. Sensing the deadliest toxin: technologies for botulinum neurotoxin detection. Toxins. 2, 24-53 (2010).
  49. Bagramyan, K., Barash, J. R., Arnon, S. S., Kalkum, M. Attomolar detection of botulinum toxin type A in complex biological matrices. PLoS One. 3, (2008).
  50. Wang, D., Baudys, J., Kalb, S. R., Barr, J. R. Improved detection of botulinum neurotoxin type A in stool by mass spectrometry. Anal. Biochem. 412, 67-73 (2011).
  51. Parks, B. A., et al. Quantification of botulinum neurotoxin serotypes A and B from serum using mass spectrometry. Anal. Chem. 83, 9047-9053 (2011).
  52. Kalb, S. R., Goodnough, M. C., Malizio, C. J., Pirkle, J. L., Barr, J. R. Detection of botulinum neurotoxin A in a spiked milk sample with subtype identification through toxin proteomics. Anal. Chem. 77, 6140-6146 (2005).
  53. Kalb, S. R., et al. The use of Endopep-MS for the detection of botulinum toxins A, B, E, and F in serum and stool samples. Anal. Biochem. 351, 84-92 (2006).
  54. Boyer, A. E., et al. From the mouse to the mass spectrometer: detection and differentiation of the endoproteinase activities of botulinum neurotoxins A-G by mass spectrometry. Anal. Chem. 77, 3916-3924 (2005).
  55. Barr, J. R., et al. Botulinum neurotoxin detection and differentiation by mass spectrometry. Emerg. Infect. Dis. 11, 1578-1583 (2005).
  56. Dunning, F. M., et al. Detection of botulinum neurotoxin serotype A, B, and F proteolytic activity in complex matrices with picomolar to femtomolar sensitivity. Appl. Environ. Microbiol. 78, 7687-7697 (2012).
  57. Jones, R. G., Ochiai, M., Liu, Y., Ekong, T., Sesardic, D. Development of improved SNAP25 endopeptidase immuno-assays for botulinum type A and E toxins. J. Immunol. Methods. 329, 92-101 (2008).
  58. Ekong, T. A., Feavers, I. M., Sesardic, D. Recombinant SNAP-25 is an effective substrate for Clostridium botulinum type A toxin endopeptidase activity in vitro. Mikrobiyoloji. 143 (pt 10), 3337-3347 (1997).
  59. Shone, C. C., Roberts, A. K. Peptide substrate specificity and properties of the zinc-endopeptidase activity of botulinum type B neurotoxin. Eur. J. Biochem. 225, 263-270 (1994).
  60. Piazza, T. M., et al. In vitro detection and quantification of botulinum neurotoxin type e activity in avian blood. Appl. Environ. Microbiol. 77, 7815-7822 (2011).
  61. Mizanur, R. M., Gorbet, J., Swaminathan, S., Ahmed, S. A. Inhibition of catalytic activities of botulinum neurotoxin light chains of serotypes A, B and E by acetate, sulfate and calcium. Int. J. Biochem. Mol. Biol. 3, 313-321 (2012).
  62. Sugii, S., Sakaguchi, G. Molecular construction of Clostridium botulinum type A toxins. Infect. Immun. 12, 1262-1270 (1975).
  63. Sharma, S. K., Ramzan, M. A., Singh, B. R. Separation of the components of type A botulinum neurotoxin complex by electrophoresis. Toxicon. 41, 321-331 (2003).
  64. Bryant, A. M., Davis, J., Cai, S., Singh, B. R. Molecular composition and extinction coefficient of native botulinum neurotoxin complex produced by Clostridium botulinum hall A strain. Protein. J. 32, 106-117 (2013).
  65. Kukreja, R. V., Singh, B. R. Comparative role of neurotoxin-associated proteins in the structural stability and endopeptidase activity of botulinum neurotoxin complex types A and E. 46, 14316-14324 (2007).
  66. Eisele, K. H., Fink, K., Vey, M., Taylor, H. V. Studies on the dissociation of botulinum neurotoxin type A complexes. Toxicon. 57, 555-565 (2011).

Play Video

Bu Makaleden Alıntı Yapın
Dunning, F. M., Piazza, T. M., Zeytin, F. N., Tucker, W. C. Isolation and Quantification of Botulinum Neurotoxin From Complex Matrices Using the BoTest Matrix Assays. J. Vis. Exp. (85), e51170, doi:10.3791/51170 (2014).

View Video