We established a fluorescent in situ hybridization protocol for the detection of a persistent DNA virus genome within tissue sections of animal models. This protocol enables studying infection process by codetection of the viral genome, its RNA products, and viral or cellular proteins within single cells.
Single cell codetection of a gene, its RNA product and cellular regulatory proteins is critical to study gene expression regulation. This is a challenge in the field of virology; in particular for nuclear-replicating persistent DNA viruses that involve animal models for their study. Herpes simplex virus type 1 (HSV-1) establishes a life-long latent infection in peripheral neurons. Latent virus serves as reservoir, from which it reactivates and induces a new herpetic episode. The cell biology of HSV-1 latency remains poorly understood, in part due to the lack of methods to detect HSV-1 genomes in situ in animal models. We describe a DNA-fluorescent in situ hybridization (FISH) approach efficiently detecting low-copy viral genomes within sections of neuronal tissues from infected animal models. The method relies on heat-based antigen unmasking, and directly labeled home-made DNA probes, or commercially available probes. We developed a triple staining approach, combining DNA-FISH with RNA-FISH and immunofluorescence, using peroxidase based signal amplification to accommodate each staining requirement. A major improvement is the ability to obtain, within 10 µm tissue sections, low-background signals that can be imaged at high resolution by confocal microscopy and wide-field conventional epifluorescence. Additionally, the triple staining worked with a wide range of antibodies directed against cellular and viral proteins. The complete protocol takes 2.5 days to accommodate antibody and probe penetration within the tissue.
Herpes simplex virus type 1 (HSV-1) is a persistent human neurotropic virus, establishing a long-term latent infection in neurons of the trigeminal ganglia (TG) of the peripheral nervous system, from which it reactivates periodically to replicate and spread. The HSV-1 genome is a 150 kb dsDNA localizing in the nucleus of the host neuron where it remains as multicopy chromatinized plasmids, which do not integrate into the host-cell genome1,2. During latency, the HSV-1 replicative cycle genetic program is strongly repressed, and gene expression is restricted to the latency-associated transcript (LAT) locus, from latency establishment to initiation of reactivation3. LAT produces a long 8.5 kb noncoding RNA processed into a major 2 kb stable lariat, and several miRNA4-7. HSV-1 latency is thus characterized by the presence of the viral genomic DNA, LAT RNA, and the absence of detectable replicative cycle proteins.
Animal models, predominantly mouse and rabbit, are experimental models recapitulating several features of latency in human. One of the main interests of those models is that they allow studying physiological aspects of HSV-1 latency in immunocompetent hosts. Over the past decades, many experimental tools, such as genetically modified viruses and mice, have been developed to study the physiology, genetics, and cellular biology of HSV-1 latency, from animal tissues. Until now, viral genomic DNA was detected and quantified by Southern blot and qPCR from dissociated TGs. However, there is currently no method available to detect HSV-1 genome by in situ hybridization on tissue sections8. Consequently, latency is routinely assessed on histological sections through the detection of LAT RNA by RNA in situ hybridization rather than viral genome detection. Because it has been impossible to characterize infected cells based on the presence of viral genomes, this technical limitation has been a major drawback to the analysis of many aspects of the host-virus interactions, such as the relationship between the viral genome and cellular and viral gene expression or the host cell-mediated immune response9,10.
Most importantly, the cell-to-cell heterogeneity of the latent infection remains relatively unexplored and has been shown to be a key feature of latency in mice and in human sensory ganglion neurons implanted into SCID mice11-17. Typically, it was shown by qPCR that the HSV-1 genome copy number per cell varies from 5 to several hundreds. Although LAT appears as a key regulator of latency and reactivation, qPCR data on isolated neurons and in situ PCR indicated that only a subset of latently infected neurons, as low as 30%, expresses the LAT locus11,12,18-21. How the host cell and the cellular environment within the tissue impact on the virus latency establishment and viral gene expression remains unclear. Here we describe a robust fluorescent in situ hybridization (FISH) method for the efficient detection of low-copy HSV-1 genomic DNA within animal neuronal tissue sections. This method has been designed and used by us to get access to high resolution microscopy imaging that is necessary to study the interaction of the viral genome with the host cell intra-nuclear components22. Additionally, we describe a multiple staining method for the simultaneous detection of the viral DNA with RNA and proteins, which is a unique tool to describe the virus-host interactions that regulate viral gene expression. The method can also be applied for a broad range of analyses requiring the detection of HSV-1 latent genome, such as quantifying infected neurons in large number of sections. A key step is to apply antigen retrieval treatment to make the viral DNA accessible to hybridization. Thus, this protocol might also be efficient to the detection of other dsDNA viruses, which are currently not detectable by conventional DNA-FISH approaches within animal tissues.
This method was used in a study published previously 22. For general background and description of conventional manipulation on ISH, IF and FISH, we suggest the following available literature 23.
1. Animal Infection
All procedures involving experimental animals conformed to ethical issues from the Association for Research in Vision and Ophthalmology (ARVO) Statement for the use of animals in research, and were approved by the local Ethical Committee of UPR-3296-CNRS, in accordance with European Community Council Directive 86/609/EEC. All animals received unlimited access to food and water.
The method of mouse infection with HSV-1 described below has been used in studies previously published24-26.
2. Mouse Perfusion-fix
3. TG Harvesting
4. Cryosection Preparation
5. HSV-1 Probe Labeling
The protocol described hereafter for the detection of HSV-1 genome by DNA FISH has been successfully used with two types of probes. The first is a home-made Cy3-labeled fluorescent probe which is appropriate for the fine analysis of nuclear organization within individual cells, by high magnification fluorescent microscopy. The second is a commercially available biotinylated probe, which can be combined with peroxidase-based signal amplification to provide a bright signal. The latter is appropriate for identification and quantification of virus containing neurons at low magnification in whole section, and for the analysis of the HSV-1 genome patterns. End-users should evaluate which approach fits best the goal of their study. The commercially available probe is listed in the reagent section, and the preparation of the home-made probe is described below.
6. DNA-FISH
Figure 1 shows an overview of the main steps of the DNA-FISH protocol, and how to perform DNA-FISH as part of a multiple staining experiment to codetect RNA and protein, as described in Protocols 7-9.
7. Dual RNA-DNA FISH
See Figure 1, green boxes for an overview.
For multiple staining procedures including an RNA-FISH step, it is generally advised to first perform RNA detection as such target is sensitive to degradation by RNAse and chemicals. Additionally, DNA-FISH procedure includes treatments that reduce the efficiency of other staining. For RNA-FISH, we chose an enzyme based detection approach (Tyramide Signal Amplification (TSA) using biotinylated probes and peroxidase (HRP) coupled streptavidin). TSA is based on a fluorescent tyramide substrate (see reagent table for details), which is covalently linked to the tissue by a peroxidase enzymatic reaction. The RNA-FISH signal is thus preserved during DNA-FISH.
8. Immuno-DNA FISH
See Figure 1, purple boxes for an overview.
Similarly to RNA-DNA-FISH, it is advised to perform first the immunofluorescence, since DNA-FISH is likely to denature proteins and prevent their detection by antibodies. The quality of immunofluorescence signal is highly dependent on the antibody characteristics, and several antibodies should be tested whenever possible. Epitope unmasking is performed once before the immunofluorescence to improve both the protein detection and DNA-FISH. To preserve the immunofluorescence signal on the sample during the DNA-FISH procedure it is necessary to covalently link it to the tissue. We present here two approaches that provided good results in our hands, antibody post-fixation and tyramide based detection (see step 8.5). The choice should be driven by preliminary tests for each target/antibody pair.
9. Dual DNA-RNA FISH Coupled with Immunofluorescence
See Figure 1, orange boxes for an overview.
RNA-FISH is performed first, followed by immunofluorescence, and lastly DNA-FISH. If immunofluorescence is detected by tyramide reaction, it is key to quench completely the HRP activity from the RNA-FISH step with H2O2, and to verify that quenching is efficient. This is done by using one slide as a "no primary antibody" control.
Because ethanol-based dehydration is deleterious for some solvent-sensitive proteins, this step of RNA-FISH can inhibit immunofluorescence. If so, RNA-FISH can be performed with an alternate protocol, as detailed below in stpe 9.3.
10. Slide Mounting and Imaging
After several months of extensive testing, we discovered that heat-based chemical unmasking made latent HSV-1 genome available for fluorescent in situ hybridization. During the process, we tried various unmasking procedures, and only heat-based treatments (i.e. heating the sections up to sub-boiling temperature in a microwave oven) appeared efficient. We then tested several salt buffers that are routinely used in immunohistochemistry (IHC) and electron microscopy to retrieve epitopes31,32, including 0.01 M pH 6.0 Citrate buffer (that we used in all our studies), 1x PBS, 1mM EDTA, 0.1 M Tris-HCl pH 7.4 and distilled water. While EDTA buffers tend to damage the tissue, all other buffers were suitable to HSV-1 detection, which appears as single or multiple spots within the nucleus of neurons (Figure 2A, Note that these tissues are highly auto-fluorescent, which appears in some images as a homogeneous signal in the cytoplasm). In our hands, citrate buffer appeared to constantly provide a good signal without damaging the tissue and thus was chosen for our routine protocol.
The use of directly labeled Cy3-DNA probes (made from parts of HSV-1 genome cloned in cosmids) provides robust and reproducible results. However, it requires having access to HSV-1 genome libraries. We thus verified that our protocol would work for anyone having access only to commercial probes. Figure 2B shows HSV-1 latent genome detection by DNA-FISH using a pan-HSV-1 biotinylated probe obtained from Enzo Biochem. Along these lines, we tested whether the DNA-FISH protocol could potentially be used by scientists using other HSV-1 animal models. Figure 3A illustrates the detection of HSV-1 genome on samples from mouse and rabbit, infected with three commonly used strains, SC16, 17syn+ and McKrae, at either acute or latent stage of infection, within sections of trigeminal ganglia. In all cases HSV-1 genomes show as a spotty signal, of brightness and intensity that varies from cell to cell. Finally, we extended the applicability of our protocol to the replicative cycle of HSV-1, by performing DNA-FISH on tissues from mice undergoing a general herpes infection. In these animals large and bright aggregates of HSV-1 genomes could be detected in various tissues including brain, spinal cord, eyes and dorsal root ganglia (Figure 3B).
Many aspects of HSV-1 latency are still poorly understood, such as how HSV-1 gene expression is regulated through its interactions with the nuclear architecture33-35, whether a specific subset of neurons are preferred host-cell for latency establishment and reactivation13,14,36,37, or how immune surveillance takes place within the ganglia according to virus load or virus gene expression9,10. The protocol described here will help tackle these questions, by codetection of HSV-1 genome and viral or cellular RNAs and proteins. Figure 4 illustrates the codetection of HSV-1 genome together with the HSV-1 LAT RNA (Figures 4A and 4C), with cellular proteins such as the centromeric protein CENP-A (Figure 4B, IF followed by PFA post-fixation), or the chromatin and PML-NB associated protein ATRX (Figure 4C, IF followed by TSA based detection). Figure 4C illustrates data from a triple staining experiment showing HSV-1 DNA (red), its RNA product LAT (blue) and a candidate regulatory protein, ATRX (green). The combination of our DNA-FISH protocol and direct or enzyme based detection of RNA-FISH and immunofluorescence signal, represent a versatile and widely applicable set of tools to explore in situ the virus-host relationship at the cell and tissue level.
Figure 1. Overview of the DNA-FISH protocol and integration into multiple target staining. The main steps of the DNA-FISH protocol and the connection with protocols for codetection of RNAs and proteins are schematically represented. Critical steps are indicated by warning signs. DNA-FISH main steps are rehydration, permeabilization, unmasking, methanol-acetic acid treatment and hybridization. Within the procedure, unmasking is a critical step, which needs to be carefully set-up and respected. The two other critical steps depend on which technical procedures are compatible with the antibodies used for immunodetection. These will impact on the RNA-FISH procedure for the triple staining, and on the detection strategy of immunofluorescence. Click here to view larger image.
Figure 2. Detection of HSV-1 latent genome after antigen unmasking. A. TG sections from 28 dpi infected mice were prepared as indicated in the protocol section. TG sections were processed for DNA-FISH as indicated in Figure 1, and the heat-based unmasking was perform using the buffer indicated on top of each image. The outline of the nucleus is depicted as a dashed line. The signal observed in the cytoplasm is due to auto-fluorescence of the tissue. B. TG sections prepared as in A. were processed for DNA-FISH using a commercially obtained biotinylated HSV-1 probe. The hybridized probe was detected using TSA and an Alexa Fluor labeled substrate (green). Nuclei were counterstained with Hoechst 33352 (blue). An enlarged cropped image is shown in the right column. Two types of HSV-1 genome pattern are shown to illustrate a typical HSV-1 intranuclear localization. All images were collected on a wide-field epifluorescence microscope. Scale bar is 5 µm. Click here to view larger image.
Figure 3. Detection of HSV-1 genome in several models. A. The standard DNA-FISH protocol was applied to TG sections from various origins. SC16 infected mouse TG sections were prepared as described in the protocol section. 17syn+ infected mouse sections and McKrae infected rabbit sections were provided by collaborators. Images were collected on a wide-field epifluorescence microscope. Scale bar is 5 µm. B. SC16 infected mice undergoing a general herpes infection were sacrificed at 6 dpi and several tissues were collected, frozen and sectioned. The standard DNA-FISH protocol was applied as indicated in Figure 1. Images were collected on a wide-field epifluorescence microscope. Scale bar is 10 µm. Click here to view larger image.
Figure 4. Codetection of HSV-1 genomic DNA and RNAs and proteins on single sections. SC16 infected mouse TG sections were processed for RNA-DNA FISH, immuno-DNA FISH or the triple staining as indicated in Figure 1. A. RNA-DNA FISH using a HSV-1 genome Cy3 labeled probe (red) and a RNA-LAT biotinylated ribo-probe (green). LAT RNA probe was detected using TSA and an Alexa Fluor 488 labeled substrate. Nuclei were counterstained with Hoechst 33352 (blue) B. Immuno-DNA FISH using an anti-CENP-A antibody (green) and a HSV-1 genome Cy3 labeled probe (red). The antibodies were post-fixed 10min with 1% PFA in PBS before running DNA-FISH. Nuclei were counterstained with Hoechst 33352 (blue). C. Immuno-RNA-DNA-FISH using a RNA-LAT biotinylated ribo-probe (blue), an anti-ATRX antibody (green) and a HSV-1 genome Cy3 labeled probe (red). The LAT RNA probe was detected using tyramide detection and a blue fluorescently labeled substrate, and the anti-ATRX and secondary antibodies were detected by tyramide detection and a green fluorescently labeled substrate. All images were collected on a wide-field epifluorescence microscope. Scale bar is 5 µm. Click here to view larger image.
The protocol described here allows the detection of HSV-1 latent genome within neurons of mouse neuronal tissue sections. Our understanding of the pathways regulating viral gene expression has been limited by the lack of method to detect HSV-1 genomic DNA in situ within neuronal tissues. Information on genome copy number and proportion of infected neurons came mainly from PCR analysis on dissociated neurons11,12. In elucidating the role the host-cell nuclear architecture on HSV-1 latency, we set to determine the localization of latent HSV-1 genome by DNA-FISH, within the nucleus of neurons of latently infected mice. We have tested a wide variety of DNA-FISH protocols and tissue treatments, and found heat-based "epitope unmasking" as an essential step of virus DNA-FISH detection. Such treatment is routinely used to reveal protein epitope within paraffin embedded sections for immunohistochemistry. Although it is almost universally used in pathology, it is not conventionally used in DNA-FISH. While many studies support that this technique preserves the morphology of the tissue at the scale of light microscopy, the end-user should include appropriate controls to validate this point in his particular biological system38. In our hands, other unmasking procedures such as protease treatments did not allow HSV-1 DNA detection, while heat-based unmasking using various buffers consistently made HSV-1 latent genomic DNA available to FISH probes (Figure 2). Heat-based unmasking is thought to eliminate part of the crosslinks between proteins, indicating that HSV-1 DNA is tightly associated to proteins. This is consistent with the recent demonstration that HSV-1 latent and lytic genome is associated with cellular histones2,39,40. Because the genomes of other herpesviruses are associated with histones: VZV41; HCMV42,43; EBV44-46; KHSV47-49, the protocol described here might be applied to detect the genomes of these herpesviruses as well as many others, but probably also to detect other persistent nuclear viruses such as papillomaviruses, hepatitis B virus, and retroviruses. Interestingly, the use of the current protocol on different experimental settings (tissues from infected mice and rabbits, sections prepared by different laboratories, and use of different HSV-1 strains) did not require additional set-up for detection of HSV-1 genome. To apply the protocol to other biological systems, we anticipate that fixation procedure and antigen retrieval techniques could be areas of further development.
The classical approach in evaluating HSV-1 latency is to detect the presence of LAT RNA combined to the absence of detection of lytic cycle gene products in neurons. However, studies based on in situ PCR and qPCR on isolated neurons from mouse models of latency indicated that the number of infected neurons (i.e. HSV-1 genome positive neurons) was two to three time higher than the LAT expressing neurons12,18. Using RNA-DNA-FISH, it was confirmed that in our mouse model 20-30% of HSV-1 DNA positive neurons are also positive for LAT RNA22. The use of DNA-FISH and codetection of viral and cellular DNA, RNA and protein components will provide a new set of tools to characterize the pathways regulating HSV-1 latent gene expression. In addition, HSV-1 latency is known to be a heterogeneous phenomenon as it takes place in a wide variety of neuron subtypes, and it is characterized by heterogeneity in genome copy number and in LAT RNA expression12,22. A major benefit of DNA-FISH is to provide access to single cell analysis within the complexity of the tissue, and thus to take into account the heterogeneity of HSV-1 latency. For example, we have linked the expression of LAT RNA with the abundance of HSV-1 genome in individual neurons22. In addition, this technique may also be applicable to evaluating the status of viral genomes using in vitro cell culture models as well as animal models utilizing human ganglion implanted into SCID mice13-17. A future application of our DNA-FISH protocol will be the possibility to characterize HSV-1 latency through the number of HSV-1 genome positive neurons. This could be performed using biotinylated probes and tyramide-based detection, which produces a signal strong enough to be detected at low magnification. Such application is made possible by the very low background generated by the tyramide detection system. The Cy3 labeled HSV-1 probes described in this protocol could be used as well however requires observation at higher magnification, which would be highly time-consuming to read large number of sections.
Perhaps the major qualities of the DNA-FISH protocol described here are versatility and robustness, which makes it compatible with the codetection of both RNA and protein. Indeed we found that all treatments required to detect RNA or protein, or both, do not alter the quality and brightness of the DNA-FISH signal. RNA-FISH can be performed before DNA-FISH, using either ethanol dehydration or formamide-based prehybridization. We recommend the ethanol-based protocol, which results in less background with TSA detection reagents. The formamide-based protocol should be used when RNA-FISH is followed by immunofluorescence with antibodies that do not work on ethanol treated samples. When performing immuno-DNA-FISH, covalent linking of the immunofluorescence signal can be performed by tyramide-based detection (which amplifies the signal), or by post-fixation to preserve the details of the protein localization pattern. To optimize post-fixation, the immunofluorescence protocol should first be set-up to get a strong signal, and the strongest post-fixation procedure allowing good DNA-FISH signal should be determined. This will provide a range of conditions within which the best compromise between immunofluorescence preservation and DNA-FISH signal can be obtained. As for any other antibody-based detection method, the quality of the signal and the best protocol is highly dependent on the antibody itself. Our protocol is no exception and we have observed that some antibodies work very well with any of the protocol described here (for example anti-PML mAb clone 36.1) and some others need significant testing. Overall, we successfully detected most of our intended target (an exception was SP100 protein), including cytoplasmic and membrane proteins, and nuclear proteins associated with various nuclear domains (chromatin -HP1-, centromeres -CENP-A, CENP-B-, PML nuclear bodies -PML, Daxx, ATRX-). On the basis of our testing we anticipate that our DNA-FISH protocol be compatible with the immuno-codetection of reporter constructs (β-galactosidase, fluorescent proteins…) that are commonly used to analyze promoter activity from viral genomes.
The authors have nothing to disclose.
We thank N. Sawtell (Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA), S. Efstathiou (University of Cambridge, UK) and James Hill (LSU Health Sciences Center, New Orleans, USA) for providing samples from HSV-1-infected mice and rabbits, respectively, and for reagents; H. Masumoto (Kazusa DNA Research Institute, Chiba, Japan) and S. Khochbin (Institut Albert Bonniot, Grenoble, France) for helpful discussions.
This work was funded by grants from the Centre National de la Recherche Scientifique (CNRS) (ATIP program, to PL, http://www.cnrs.fr), the French National Research Agency (ANR) (ANR-05-MIIM-008-01, CENTROLAT, http://www.agencenationale-recherche.fr), the FINOVI Foundation (http://www.finovi.org/:fr:start), the LabEX DEVweCAN (ANR-10-LABX-61) of Université de Lyon, within the program "Investissements d'Avenir" (ANR-11-IDEX-0007) operated by the ANR (http://www.agence-nationale-recherche.fr), l’Association pour la Recherche contre le Cancer (ARC-7979 and ARC-4910, http://www.arc-cancer.net), la Ligue Nationale Contre le Cancer (LNCC, http://www.ligue-cancer.net), and INCa (EPIPRO program, http://www.e-cancer.fr). FC and PL are CNRS researchers.
Balb/c mice | Janvier, France | 6 week-old females | |
HSV-1 strains | SC16 strain (wild type) | See Labetoule, M. et al. (2003) Invest Ophthalmol Vis Sci 44: 217–225, for details on HSV-1 strain and virus stock preparation. | |
Ketamine hydrochloride | Sigma | K2753 | Intraperitoneal injection of a solution containing Ketamine (100mg/kg) and Xylazine (10mg/kg) |
Xylazine hydrochloride | Sigma | X1251 | |
Paraformaldehyde (PFA) | Sigma | 158127 | Suspend 4g of PFA in 90mL of water. Add 50µL of 1N NaOH, and heat at 60°C in a water bath with agitation. PFA dissolves in about 30min. Add 10mL of 10X PBS. This solution can be prepared in advance and stored at -20 °C in 5mL tubes. Caution. Manipulate under a fume hood. |
Physiological Saline | Sigma | 07982-100TAB-F | |
1X PBS, pH 7.4 (sterile) | Life Technologies | 10010-015 | |
Sucrose | Sigma | 84100 | Prepare a 20% sucrose solution in 1X PBS. |
Cryosectionning embedding medium – Tissue-Tek OCT Compound – | SAKURA | 4583 | |
Large vector DNA purification kit | Qiagen | 12462 | To purify Cosmid or BAC vector containing HSV-1 genome and store at -20°C |
Nick translation kit | Roche Applied Sciences | 10 976 776 001 | |
Cy3-dCTP | GE Healthcare | PA53021 | Protect from light |
0.5M EDTA | Sigma | E6758 | |
G50 Mini spin column | GE Healthcare | 27-5330-01 | |
Salmon sperm DNA 10mg/mL | Invitrogen / Life Technologies | 15632-011 | |
Ethanol molecular biology grade | Sigma | 87047 | Prepare a 70% solution |
Salmon sperm DNA | Invitrogen / Life Technologies | 15632-011 | |
Formamid Molecular biology grade | Sigma | F9037 | Caution. Manipulate under fume hood. |
HSV-1 biotinylated commercial probe | Enzo Life Sciences | ENZ-40838 | |
ImmEdge hydrophobic pen | Vector Laboratories | H-4000 | |
20X Saline Sodium Citrate (SSC) | Sigma | S6639 | Prepare a 2X SSC solution in ddH20. |
Triton X-100 | Sigma | T8787 | Prepare a 10% stock solution in water and store at +4°C. Prepare the 0.5% solution in 1X PBS right before use. |
10mM sodium citrate pH 6.0 | Sigma | S1804 | Prepare a 100mM stock solution (10X). Weigh 10,5g of citric acid (MW 210.14. Caution, irritant and toxic, wear appropriate mask and gloves), and dissolve in 400mL water. Adjust pH at 6.0 with 1N NaOH (caution, irritant, wear gloves). Adjust to 500mL with distilled water. Dilute 10 times in distilled water before use. |
Acetic Acid | Sigma | 320099 | |
Methanol, molecular biology grade | Sigma | 322415 | |
Dextran sulfate – MW 500 000 | Euromedex | EU0606-A | |
Denhardt's solution (100X) | Euromedex | 1020-A | |
Rubber Cement "FixoGum" | Marabut | 290110000 | |
DNA purification kit – Qiaquick PCR purification kit – | Qiagen | 28104 | |
T7 in vitro transcription kit | Ambion / Life Technologies | AM1314 | |
Biotin-16-UTP | Roche Applied Sciences | 11388908910 | |
RNA purification mini-column | Qiagen | 73404 | |
Ribonucleoside Vanadyl Complex | New England Biolabs | S1402S | |
H2O2 | Sigma | H3410 | Prepare a 3% solution in distilled water. Store at +4 °C and protect from light. |
Yeast tRNA | Invitrogen | 15401011 | prepare a 10mg/mL solution in RNAse free water |
Normal Goat Serum | Invitrogen | PCN5000 | |
Primary antibodies | Any supplier | The following primary antibodies were used in the result section: anti-mouse CENP-A (rabbit mAb C51A7, Cell Signaling Technologies), and anti-ATRX H-300 (Santa Cruz Biotechnology) | |
Secondary fluorescent antibodies | Invitrogen / Life Technologies | The fluorescent secondary antibodies routinely used in our protocol are AlexaFluor labeled goat antibodies (IgG H+L). The antibody used in the result section is an anti-rabbit goat antibody labaled with AlexaFluor 488 (reference A11001) | |
Tyramide Signal Amplification (TSA) kit – Streptavidin + AlexaFluor 350 (blue fluorescence) | Invitrogen / Life Technologies | #T20937 | TSA kits are also available from Perkin Elmer |
Tyramide Signal Amplification (TSA) kit – Streptavidin + AlexaFluor 488 (green fluorescence) | Invitrogen / Life Technologies | #T20932 | |
Hoechst 33342 | Invitrogen / Life Technologies | H3570 | Prepare a 0.5µg/mL solution in 1X PBS immediatly before use. Discard the remaining solution. |
22x50mm coverslip. n°1.5 glass. | Electron Microscopy Sciences | 72204-04 | |
Mounting medium with anti-fading agent – Vectashield – | Vector Laboratories | H-1000 | Another conventional product is Fluoromount G from electron microscopy Science |
Superfrost glass slides | FisherScientific | 12-550-15 | |
EQUIPMENT | |||
Equipment / material | Company | Reference | Note |
Needle for infection | Glass micropipette hot drawn. Home made. | ||
Dissection equipement | Moria, France | Microsurgical scissors and forceps | |
Peristaltic pump | Cole Palmer Instruments | Easyload Masterflex | |
Micro-syringe pump device (Nano Pump) | kdScientific | KDS310 | |
Cryostat | Leica France | CM 1510-1 | |
-80 °C freezer | Sanyo | Ultra Low -80°C | |
Domestic microwave oven | |||
Dry block heater | Eppendorf | 022670204 | |
Incubator Slide moat | Boekel Scientific | 240000 | |
Coplin Jar | Dominique Dutscher | 68512 | |
Staining glass container | Dominique Dutscher | 68506 | |
Fluorescent microscope | Zeiss | The images presented in the result section were collected with a Zeiss AxioObserver with objective x40 LD NeoFluor N.A 0.6, and x100 PlanApochromat N.A 1.3. Filter set #38, #43 and #43. HXP 120 fluorescence light source. Photometrics CoolSNAP HQ2 CCD camera. Signal will be more easily observed on a recent high efficiency microscope such as Zeiss AxioImager/AxioObserver series, Nikon Ti-E/Ni-E series or Leica DM/DMI6000 series |