적외선 신경 자극은 청각 시스템과 관련된 포함 신경 유형의 범위 내에서 전기 자극에 대한 대안으로 제시되었다. 이 프로토콜은 기본 청각 신경의 문화 적외선 신경 자극의 메커니즘을 연구 패치 클램프 방법을 설명합니다.
그것은 펄스, 적외선 레이저 빛이 표적 조직의 추가 수정에 관계없이, 신경 조직에 전기 반응을 유도하는 데 사용할 수 있습니다 최근 몇 년 동안 입증되었습니다. 적외선 신경 자극은 청각 신경의 신경 자극에 표시된 특정 관심, 생체 내 말초 감각 신경 조직의 다양한보고되었다. INS는 이러한 설정에서 작업 표시하고있는 동안 그러나, 적외선 빛은 신경 자극의 원인이되는 메커니즘 (또는 메커니즘)은 현재 잘 이해되지 않습니다. 여기에 제시 프로토콜은 배양 기본 청각 신경에있는 적외선 신경 자극의 조사를 용이하게하기 위해 설계된 전체 세포 패치 클램프 방법을 설명합니다. 철저하게 통제 된 조건 하에서 체외에서 적외선 레이저 조명에 이들 세포의 반응을 특성화함으로써, 기본적인 physica에의 향상된 이해를 얻을 수있을 수 있습니다L, 생화학 적 과정은 적외선 신경 자극을 기본.
신경 생리학 및 의학 생체 공학의 분야는 신경 조직에 전기 반응의 제어 자극 할 수 있도록 기술에 크게 의존하고 있습니다. 전기 자극은 신경 자극의 황금 표준 남아있는 동안 신경 반응 및 조직 1 주변에 현재의 확산으로 인해 자극 특이성의 부족을 녹음 할 때, 그것은 이러한 자극 유물의 존재와 같은 단점의 숫자에서 겪고있다.
지난 수십 년간 광학 매개 자극 기술 2의 개발을 보았다. 이러한 기술 중 일부는 특정 분자의 추가 (예 갇힌 분자) 3 연구 설정 밖에서 쉽게 적용 할 수있다 어느 것도 유전자 조작의 일부 형태 (예를 들어 optogenetics 4)를 통해, 표적 조직의 수정이 필요합니다. 특히 관심을 따라서 적외선 신경 자극 (INS), whereb는Y 신경 조직은 펄스 적외선 레이저 빛에 의해 흥분됩니다. INS는 신경 조직 2의 매우 구체적인, 비 접촉 자극을 가능하게하여 전기 자극의 많은 단점을 극복 할 수있는 잠재력이있다. INS가 성공적으로 생체 내에서 다양한 설정에서 설명하고있는 동안 그러나, 여기의 정확한 메커니즘은 불확실 남아있다.
최근 일부 서적은 5-7 INS 뒤에 메커니즘을 폭로으로 진행 상황을 보여 주었다. 물에 의해 레이저 빛의 흡수에 의한 급속한 난방은 중요한 역할을 나타납니다. 그러나이 넘어 합의가 아직 도달 할 수있다. 샤피로 등. 7 빠른 가열 세포막과 이후의 탈분극의 정전 용량의 변화를 선도 세포막에 인접한 하전 입자의 분포에 교란을 일으키는 원인이 그것에 매우 일반적인 메커니즘을 제안한다. 또한, 알버트 등은 5.는 LASE를 주장R 유도 가열은 이온이 세포막을 통과 할 수 있도록 온도에 민감한 이온 채널 (일시적인 수용체 잠재적 인 vanilloid 채널)의 특정 클래스를 활성화합니다. 이 단계에서 그것을 식별 할 수 아직 추가 요소가 있는지 여부를 실제로 이러한 메커니즘을 결합하는 방법 불분명하거나.
출판물의 작은 수 (참조 5,7-9) 체외에서 INS를 조사했지만,이 분야에서 출판 작업의 대부분은 (예를 들어, 참조 1,6,10-18) 생체 내에서 실시되었습니다. 청각 신경의 적외선 자극 인공 와우 10,14-18의 잠재적 인 응용 프로그램 때문에 특별한 관심의 영역이다. 생체 내 실험에서 다양한 설정의 기술, 생체 연구에 의해 여유 컨트롤의 증가 수준 기계화에 대한 자세한 이해로 이어질 것으로 예상된다의 효과를 확인하기 위해 중요하지만INS에 대한 책임 anism. 이 보고서는이 또한 청각 시스템에서 기존 데이터의 큰 바디에 연결하는 동안 기본 메커니즘을 연구하는 데 사용할 수있는 패치 클램프 수사 배양 나선 신경절 신경 세포의 준비에 대해 설명합니다.
패치 클램프 기술은 단일 세포의 전기적 활동을 기록하는 수단을 제공하고 각각의 기본 전류 (19)의 기여를 공부하고, 전기 생리학 현상의 연구를위한 훌륭한 도구입니다. 이 기술은 같은 양식 나선 신경절과 같은 기본 뉴런의 체외 준비에 안정적으로 적용하면 깊이 신경 활동을 통제하고 조작하는 메커니즘을에서 공부 할 수있는 기회를 제공합니다.
패치 클램프를 통해 나선형 신경절 신경 세포의 전기적 특성에 레이저 자극의 효과를 조사이 작품 개요 방법에 지정된 프로토콜녹음. 접근 방식은 표준 현미경 구성을 수정할 필요없이 안전 운전뿐만 아니라보다 쉽고 반복적 인 정렬을 허용, 오히려 자유 공간 레이저보다 섬유 결합 레이저를 기반으로합니다. 이러한 프로토콜의 기초에, 그것은 더 명확 INS 뒤에 기계 또는 기계 장치를 결정하기 위해 실험의 넓은 범위를 수행 할 수 있어야한다.
이 문서에 설명 된 프로토콜을 사용하면 추출 문화 나선 신경절 신경 세포 및 전체 세포 패치 클램프 실험을 수행하여 레이저 유발 전기적 활동을 조사 할 수 있습니다. 체외에서 사용할 경우, 패치 클램프 기술은 생체 내에서 달성 할 수없는 실험 매개 변수의 제어 수준을 제공합니다. 같은 파장, 펄스 에너지, 펄스 길이, 펄스 모양과 펄스 반복 시퀀스로 레이저 자극 매개 변수는 재?…
The authors have nothing to disclose.
이 작품은 연계 프로젝트 부여 LP120100264 아래의 호주 연구위원회에 의해 지원되었다.
Name of Reagent/Material | Company | Catalog Number | Yorumlar |
Cell culture materials and equipment | |||
Glass coverslips | Lomb Scientific | CSC 10 1 GP | |
4-ring cell culture dish | VWR International | 82050-542 | |
Poly-L-ornithine solution | Sigma-Aldrich | P4957 | |
Laminin | Invitrogen | 23017-015 | |
Curved forceps | WPI | 14101 | Dumont #5 tweezers (45° angle tip) |
CO2 Incubator | ThermoScientific | Heracell 150i | |
Table 1. Cell culture materials and equipment. | |||
Neurobasal media | |||
Neurobasal A | Gibco | 10888-022 | |
N-2 supplement | Invitrogen | 17502-048 | |
B27 serum-free supplement | Invitrogen | 17504-044 | |
Penicillin-Streptomycin | Invitrogen | 15140-148 | |
L-Glutamine | Invitrogen | 25030-149 | |
Intracellular solution | |||
Potassium chloride | Sigma-Aldrich | P4504 | |
HEPES | Sigma-Aldrich | H4034 | |
Potassium D-gluconate | Sigma-Aldrich | G4500 | |
EGTA | Sigma-Aldrich | E3889 | |
Na2ATP | Sigma-Aldrich | A2383 | |
MgATP | Sigma-Aldrich | A9187 | |
NaGTP | Sigma-Aldrich | G8877 | |
Potassium hydroxide | LabServ | BSPPL738.500 | |
Sucrose | Sigma-Aldrich | S8501 | |
Extracellular solution | |||
Sodium chloride | Sigma-Aldrich | 310166 | |
Potassium chloride | Sigma-Aldrich | P4504 | |
HEPES | Sigma-Aldrich | H4034 | |
Calcium chloride | Sigma-Aldrich | 383147 | |
Magnesium chloride | Sigma-Aldrich | M8266 | |
D-Glucose | Sigma-Aldrich | G8270 | |
Sodium hydroxide | LabServ | BSPSL740.500 | |
Sucrose | Sigma-Aldrich | S8501 | |
Table 2. Solutions for cell culture and patch clamp. a) Neurobasal media. b) Intracellular solution. c) Extracellular solution. | |||
Upright microscope | Zeiss | AxioExaminerD1 | Equipped with Dodt contrast |
Water-immersion objective | Zeiss | W Plan-APOCHROMAT 40x/0.75 | |
Platform and X-Y stage | ThorLabs | Burleigh Gibraltar | |
Recording chamber | Warner Instruments | RC-26G | |
Vibration isolation table | TMC | Micro-g 63-532 | |
CCD Camera | Diagnostic Instruments | RT1200 | |
Camera software | Diagnostic Instruments | SPOT Basic | |
In-line solution heater | Warner | SH-27B | |
Temperature controller | Warner | TC-324B | |
Patch clamp amplifier | Molecular Devices | Multiclamp 700B | |
Patch clamp data acquisition system | Molecular Devices | Digidata 1440A | |
Micromanipulator | Sutter Instruments | MPC-325 | |
Micropipette glass | Sutter Instruments | GBF100-58-15 | Borosilicate glass with filament |
Micropipette Puller | Sutter Instruments | P2000 | |
Recording Software | AxoGraph | Lab pack and electrophysiology tools | |
Aspirator bottle | Sigma-Aldrich | CLS12201L | 1 L Pyrex aspirator bottle, with outlet for tubing |
PE Tubing | Harvard | PolyE #340 | |
Masterflex peristaltic pump | Cole-Parmer | HV-07554-85 | |
Table 3.Patch clamp equipment. | |||
1,870 nm laser diode | Optotech | ||
200/220 μm diameter multimode optical fiber patch cord (FC/PC) | AFW Technologies | MM1-FC2-200/220-5-C-0.22 | Light delivery optical fiber, silica core and cladding, 0.22 NA |
Optical fiber through connector (FC/PC) | Thorlabs | ADAFC2 | |
Optical fiber cleaver | EREM | FO1 | |
Optical fiber stripping tool (0.25 – 0.6 mm) | Siemens | For removing optical fiber jacket | |
Optical fiber stripping tool (0.6 – 1.0 mm) | Siemens | For removing outer coating of patch cord | |
Signal generator | Any signal generator that can output the necessary pulse shapes and is capable of being externally triggered | ||
Optical fiber positioner | Custom made positioner. Could substitute with standard micropositioner used for patch clamp experiments | ||
Optical fiber chuck | Newport | FPH-DJ | |
Laser power meter and detector head | Coherent | FieldMate (power meter) with LM-3 (detector head) | |
Table 4. Laser equipment. |