A molecular beam coupled to tunable vacuum ultraviolet photoionization mass spectrometer at a synchrotron provides a convenient tool to explore the electronic structure of isolated gas phase molecules and clusters. Proton transfer mechanisms in DNA base dimers were elucidated with this technique.
Tunable soft ionization coupled to mass spectroscopy is a powerful method to investigate isolated molecules, complexes and clusters and their spectroscopy and dynamics1-4. Fundamental studies of photoionization processes of biomolecules provide information about the electronic structure of these systems. Furthermore determinations of ionization energies and other properties of biomolecules in the gas phase are not trivial, and these experiments provide a platform to generate these data. We have developed a thermal vaporization technique coupled with supersonic molecular beams that provides a gentle way to transport these species into the gas phase. Judicious combination of source gas and temperature allows for formation of dimers and higher clusters of the DNA bases. The focus of this particular work is on the effects of non-covalent interactions, i.e., hydrogen bonding, stacking, and electrostatic interactions, on the ionization energies and proton transfer of individual biomolecules, their complexes and upon micro-hydration by water1, 5-9.
We have performed experimental and theoretical characterization of the photoionization dynamics of gas-phase uracil and 1,3-dimethyluracil dimers using molecular beams coupled with synchrotron radiation at the Chemical Dynamics Beamline10 located at the Advanced Light Source and the experimental details are visualized here. This allowed us to observe the proton transfer in 1,3-dimethyluracil dimers, a system with pi stacking geometry and with no hydrogen bonds1. Molecular beams provide a very convenient and efficient way to isolate the sample of interest from environmental perturbations which in return allows accurate comparison with electronic structure calculations11, 12. By tuning the photon energy from the synchrotron, a photoionization efficiency (PIE) curve can be plotted which informs us about the cationic electronic states. These values can then be compared to theoretical models and calculations and in turn, explain in detail the electronic structure and dynamics of the investigated species 1, 3.
1. Sample Loading
2. Acquisition of a Mass Spectrum
(*This software and the other Labview codes were developed at the beamline and are available to share for no cost from the corresponding author)
3. Acquisition of a Photoionization Efficiency Curve (PIE)
4. Plotting a Photoionization Efficiency Curve (PIE)
Figure 7 shows a typical mass spectrum of the supersonic expansion of 1,3-dimethyluracil vapors (A) and the PIE curves of the three main features (the monomer at m/z 140, protonated monomer at m/z 141, and the 1,3-dimethyluracil dimer at m/z 280) as extracted from a VUV scan between 8 eV and 10 eV (B). The gray shadow is the standard deviation from three consecutive scans.
Figure 1. Schematic of the experimental apparatus with voltages shown. (1) Microchannel plate detector, (2) Reflector mirror, (3) Molecular Beam region, (4) Ion optics for extraction.
Figure 2. Source flange with nozzle and birdcage adapter.
Figure 3. Heater block with the nozzle, heating cartridge and thermocouple.
Figure 4. Graphical user interface of the data acquisition program. Click here to view larger figure.
Figure 5. Graphical user interface of the data acquisition program for photoionization efficiency scans. Click here to view larger figure.
Figure 6. Graphical user interface of the data analysis program. Click here to view larger figure.
Figure 7. A mass spectrum and photoionization efficiency curve for a 1,3-dimethyluracil molecular beam.
The monomers and dimers are generated in a supersonic jet expansion which gives rise to a molecular beam. A small sample of the DNA base is placed in a thermal vaporization source and heated to generate sufficient vapor pressure. Argon gas carries the vapors through a 100 μm orifice and passes a 2 mm skimmer to produce a cold molecular beam14. Alternatively, an effusive beam source can be used, where the sample is placed in a heated oven attached to the repeller plate (ion optics) of the mass spectrometer.
We use vacuum ultraviolet light (7.4-25 eV) to softly ionize the molecules by single photon ionization, this method minimizes the fragmentation and secondary processes and is unmatched by traditional ionization techniques utilizing electron impact schemes. The ions are produced in the interaction region of a Wiley-McLaren13 reflectron Time-of-Flight Mass Spectrometer where they are eventually detected by a micro channel plate. The detector output is fed into a pre-amplifier and a multiscaler card in a personal computer where the data is saved for further analysis. The quasi-continuous radiation arrives from an undulator located at the synchrotron (Advanced Light Source), and then passes through a gas filter where higher harmonics of the light are removed and dispersed via a 3 m monochromator to provide a maximum resolution of 5 meV.
The experiments were carried out at the Chemical Dynamics Beamline at the Advanced Light Source, Lawrence Berkeley National Laboratory and supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231, through the Chemical Sciences Division.
Name of Reagent/Material | Company | Catalog Number | Yorumlar |
Uracil | Sigma | U0750 | |
1,3-Dimethyluracil | Aldrich | 349801 |