The purpose of this video is to demonstrate procedures for obtaining healthy, intact hair cells from the inner ear organs of adult zebrafish and then using them for patch clamp studies aimed at characterizing the biophysical properties of their voltage-gated channels.
Patch clamp analyses of the voltage-gated channels in sensory hair cells isolated from a variety of species have been described previously1-4 but this video represents the first application of those techniques to hair cells from zebrafish. Here we demonstrate a method to isolate healthy, intact hair cells from all of the inner ear end-organs: saccule, lagena, utricle and semicircular canals. Further, we demonstrate the diversity in hair cell size and morphology and give an example of the kinds of patch clamp recordings that can be obtained. The advantage of the use of this zebrafish model system over others stems from the availability of zebrafish mutants that affect both hearing and balance. In combination with the use of transgenic lines and other techniques that utilize genetic analysis and manipulation, the cell isolation and electrophysiological methods introduced here should facilitate greater insight into the roles hair cells play in mediating these sensory modalities.
1. Pre-experimental Preparations
2. Isolation of Auditory and Vestibular Labyrinth
3. Hair Cell Isolation
4. Patch Clamping Zebrafish Hair Cells
5. Representative Results
Figure 4 shows images taken during the steps of cell isolation. In panel A, the otoliths associated with the lagenas, saccluli and utricles can be seen through the thin layer of bone that overlies them. These opaque structures provide convenient landmarks to aid in the safe removal of the end organs from the animal during the subsequent steps of the dissection. Panel B shows the “bowl” of bone that contains the intact labyrinths and the prominent otoliths in the utricles, lagenas and sacculi. Panel C shows a labyrinth that has been removed from the bone. Note the large otolith with the scalloped edge in the lagena, the icicle-shaped otolith in the saccule and the bean-shaped otolith in the utricle. Some of the diversity in size and morphology seen in cells isolated from the lagena is illustrated in Figure 5. A healthy cell is readily identified as being phase bright with a sharp perimeter. Cell shapes can be roughly divided into two classes: avocado-shaped (avo) and long and thin (thn) although the sizes of cells within each group can vary markedly (compare for example avo 1 and avo 3). Inset a shows a cluster of three cells that were not completely isolated from one another. The black color and granular appearance of the cell in inset b readily identifies this cell as dead. Inset c shows the tip of a patch pipette illustrating the shape and dimensions appropriate for recording from these cells.
The current traces shown in Figure 6 were obtained in response to hyperpolarizing and depolarizing steps of potential imposed on a lagena cell similar to the avo 2 shown in Figure 5. Current responses in cells of different sizes and shapes can vary widely suggesting diversity in the complement of voltage-gated channels.
Figures 1-3: Cartoons illustrating steps in the isolation of hair cells.
Figure 1. Removal of the skull capsule containing the inner ear labyrinths from zebrafish. A. Pin sacrificed zebrafish dorsal side up to dissecting dish. B. Open skull, remove and discard brain. C. Observe otoliths in utricles, lagenas and sacculi. D. Remove ventral portion of skull capsule containing the labyrinths.
Figure 2. Removal of labyrinths from skull capsule. A. Crack apart skull capsule at its midline. B. Remove labyrinths from bone. C. Remove the otoliths from the lagenas and utricles using forceps.
Figure 3. Isolation of hair cells from labyrinths. A. Gently lift off maculae with a dog hair. B. Triturate maculae with two dog hairs. C. Use isolated hair cells for patch clamp.
Figure 4. Images taken during steps in the isolation of individual cells. A. After removal of the brain, the otoliths associated with the two lagenas and sacculi (arrows) and utricles (arrowheads) can be visualized. B. After removal of the ventral portion of the skull capsule that contains the inner ear organs from the animal. The cartoon in the right half of B identifies the locations of the left utricle, lagena and saccule. The dashed line indicates the approximate position of the left labyrinth. C. Right labyrinth (medial view) D: Cartoon drawing illustrating key portions of labyrinth in C. a: anterior semicircular canal, b: horizontal canal, c: posterior canal, d: utricular otolith, e: saccular otolith, f: lagenal otolith. Scale bar in D represents 1 mm for A and B, 0.5 mm for C and D.
Figure 5. Isolated, healthy cells from the lagena illustrating the diversity of morphology; avo: avocado shaped cells; thn: long, thin cells. Inset a: cluster of three incompletely isolated cells; inset b: dead cell; inset c: tip of patch electrode used in electrophysiological recordings from zebrafish hair cells. Scale bar = 20 μm applies to the main figure and all insets.
Figure 6. Currents recorded in a patch clamped hair cell. Averaged responses in a cell (similar to avo 2 in Figure 5) to three presentations of voltage steps applied in 10 mV increments from -140 mV to +70 mV from a holding potential of -70 mV. Note the inactivating current that appears at more depolarized potentials. Voltage step magnitudes are shown next to some of the traces.
Careful dissection of the end organs and gentle treatment of the cells is critical to the successful isolation of healthy, intact and physiologically active hair cells. Adhering to the following tips will assure success:
The method described here will yield hundreds of healthy hair cells per animal. The technique can be performed at room temperature and requires no special equipment beyond a dissecting microscope. A previous report in JoVE describes the dissection of the inner ear in zebrafish using a ventral approach8. These authors demonstrate the dissection of whole, paraformaldehyde-fixed inner ear organs. We encourage the reader to watch this video for comparison with our methods. One advantage of the methods presented here is the obtaining of live cells useful for physiological investigations. Besides their use in patch clamp experiments to study the voltage-gated channels (as shown here) the use of these cells can be extended to study cell resonance9,10, monitor neurotransmitter release by making capacitance measurements11,12, investigate neuromodulation induced by the activation of ligand gated channels13 as well as tap into the wealth of information that can be gleaned from using mutants that affect both hearing and balance14.
The authors have nothing to disclose.
Funded by the NSF (0854551).
Solution Name | Recipe |
(a) NZR (Normal Zebrafish Ringer’s) (in mM) | 116 NaCl, 2 KCl, 2 CaCl2, 3 Glucose, 5 Na+-HEPES, pH 7.35. |
(b) NZR + Tricaine | NZR + 0.02% 3-aminobenzoic acid ethyl ester methane sulfonate (Sigma A5040). |
(c) NZR + BSA | NZR + 0.4% Bovine Serum Albumin (Sigma A2153). |
(d) LoCaS (Low Ca2+ Solution) (in mM) | 100 NaCl, 2 KCl, 0.05 CaCl2, 0.05 MgCl2, 3 Glucose, 30 Na+-HEPES, pH 7.35. |
(e) LoCaS + papain | LoCaS + 0.05% L-cysteine (Sigma C1276) + 0.2% papain (Sigma P3375). |
(f) K+-internal solution (in mM) | 52 K2SO4, 38 KCl, 1 K+-EGTA, 5 K+-HEPES, pH 7.3. |
Table 1. Solutions.