We show how planar patch-clamp chips fabricated at the National Research Council of Canada are sterilized, primed, loaded with medium, plated with cells, and used for electrophysiological recordings.
Due to its exquisite sensitivity and the ability to monitor and control individual cells at the level of ion channels, patch-clamping is the gold standard of electrophysiology applied to disease models and pharmaceutical screens alike 1. The method traditionally involves gently contacting a cell with a glass pipette filled by a physiological solution in order to isolate a patch of the membrane under its apex 2. An electrode inserted in the pipette captures ion-channel activity within the membrane patch or, when ruptured, for the whole cell. In the last decade, patch-clamp chips have been proposed as an alternative 3, 4: a suspended film separates the physiological medium from the culture medium, and an aperture microfabricated in the film replaces the apex of the pipette. Patch-clamp chips have been integrated in automated systems and commercialized for high-throughput screening 5. To increase throughput, they include the fluidic delivery of cells from suspension, their positioning on the aperture by suction, and automated routines to detect cell-to-probe seals and enter into whole cell mode. We have reported on the fabrication of a silicon patch-clamp chip with optimized impedance and orifice shape that permits the high-quality recording of action potentials in cultured snail neurons 6; recently, we have also reported progress towards interrogating mammalian neurons 7. Our patch-clamp chips are fabricated at the Canadian Photonics Fabrication Centre 8, a commercial foundry, and are available in large series. We are eager to engage in collaborations with electrophysiologists to validate the use of the NRCC technology in different models. The chips are used according to the general scheme represented in Figure 1: the silicon chip is at the bottom of a Plexiglas culture vial and the back of the aperture is connected to a subterranean channel fitted with tubes at either end of the package. Cells are cultured in the vial and the cell on top of the probe is monitored by a measuring electrode inserted in the channel.The two outside fluidic ports facilitate solution exchange with minimal disturbance to the cell; this is an advantage compared to glass pipettes for intracellular perfusion.
Figure 1. Principle of measurement using the NRCC patch-clamp chip
We detail here the protocols to sterilize and prime the chips, load them with medium, plate them with cells, and finally use them for electrophysiological recordings.
1. Chip fabrication
The process described in 6 results in a 3 μm thick self-standing film, a low 1 Mohm access resistance and a smooth-surfaced funnel shaped aperture that facilitates an intimate seal with the cell 9, see Figure 2. The chips are singulated and glued in Plexiglas packages with the aperture facing a hole connecting the chip to a subterranean channel. The gluing is dispensed in a way that minimizes the shunt capacitance to a nominal 17 pF. Packages are fitted with two 1.5 mm diameter and 6 mm long glass tubes as fluidic ports (Figure 3).
Figure 2. Scanning electron micrograph of a focused ion beam section of an NRCC patch-clamp chip shows a smooth silicon dioxide surface and funnel shape that favors intimate cell contacts, and a shallow orifice that accounts for a low access resistance.
Figure 3. A chip is glued at the bottom of the culture vial in a Plexiglas package fitted with subterranean fluidics and glass tubes.
2. Sterilization, priming and testing
The following steps should be performed in a biology safety cabinet to avoid contamination or plugging of the aperture.
3. Chips preparation in cell biology lab
The following steps are performed in a HEPA filtered laminar flow hood using aseptic techniques, all solutions used in this procedure must be filtered sterilized prior to use using a 0.22μm filter.
4. Cell plating of snail neurons
The patch-clamp chips may be suitable for a variety of preparations. We are currently testing our chips with mammalian primary cortical neurons and have obtained preliminary results with cells cultured for 14 days 7, which indicates that our sterilization protocol is adequate and that the chips are not cytotoxic in long-term cultures. For the purpose of this protocol, snail neurons were chosen because they represent a simple but well-established model to study neuronal electrophysiology 11, and it is with those cells that we have obtained the most significant results to date 10. Detailed cell isolation and culture procedures have been described previously 12, 13.
5. Electrophysiological recordings
To connect the chips to the amplifier (in our case a Multiclamp 700B amplifier, Molecular Devices, Foster City, CA, USA)
6. Representative Results
Figure 4. Voltage responses (top) of a LPeD1 neuron to graded series of intracellular current pulses (below). The current pulses were applied at Vm = – 60mV.
Troubleshooting
NRCC’s patch-clamp chip interrogation platform is a potentially powerful tool for high information content pharmaceutical assays and to investigate in vitro models of disease. Its advantages compared to glass pipettes are a low access resistance, which is an advantage to probe large cells, and despite a somewhat larger capacitance will result in comparable dynamics for smaller cells. Spontaneous cell to aperture seals have been routinely obtained, and whole cell entry has been observed to be spontaneous 14. A clear difference between chips and the glass pipette method is the fact that the probe is part of the cell culture dish and is not manually brought in contact with the cell membrane. Culturing cells, possibly part of functional networks, results in more biologically relevant models as disease models, and a different mechanism for securing high cell to probe seals 16. However, by contrast with cell suspensions, aspiration cannot be used to position a cell on the probe. Snail neurons, as other large cells, are amenable to manual positioning on top of the probe. For smaller cells requiring longer culture times, we have obviated the need for any manipulation and keep a high probability of obtaining a seal by patterning adhesion polypeptides on top of the probes to place cells on top of the probes, and demonstrated placement of cells on the probe 17,18.
NRCC is also developing a polyimide microfluidic patch-clamp chip 19 with a capacitance comparable to that of glass pipette. The ultimate goal of that project is a multiple-probes patch-clamp chip which allows the simultaneous monitoring of the electrophysiological activity of several neurons engaged in network behavior at the resolution of individual ion channels 14. This method is a high resolution complementary method to multi-electrode arrays 20.
The authors have nothing to disclose.
The authors wish to acknowledge Alexei Bogdanov for the fabrication of patch-clamp chips at the CPFC, and Hue Tran, Ping Zhao and Matthew Shiu for assistance with assembly. Naweed Syed was supported by a Canadian Institute of Health Research (CIHR) grant. Collin Luk is the recipient of NSERC and Alberta Heritage Foundation for Medical Research (AHFMR) studentships.