Fluorescence imaging is a promising innovative modality for image-guided surgery in surgical oncology. In this video we describe the technical procedure for detection of the sentinel lymph node using fluorescence imaging as showcased in gynecologic oncologicy. A multispectral fluorescence camera system, together with the fluorescent agent indocyanine green, is applied.
The prognosis in virtually all solid tumors depends on the presence or absence of lymph node metastases.1-3 Surgical treatment most often combines radical excision of the tumor with a full lymphadenectomy in the drainage area of the tumor. However, removal of lymph nodes is associated with increased morbidity due to infection, wound breakdown and lymphedema.4,5 As an alternative, the sentinel lymph node procedure (SLN) was developed several decades ago to detect the first draining lymph node from the tumor.6 In case of lymphogenic dissemination, the SLN is the first lymph node that is affected (Figure 1). Hence, if the SLN does not contain metastases, downstream lymph nodes will also be free from tumor metastases and need not to be removed. The SLN procedure is part of the treatment for many tumor types, like breast cancer and melanoma, but also for cancer of the vulva and cervix.7 The current standard methodology for SLN-detection is by peritumoral injection of radiocolloid one day prior to surgery, and a colored dye intraoperatively. Disadvantages of the procedure in cervical and vulvar cancer are multiple injections in the genital area, leading to increased psychological distress for the patient, and the use of radioactive colloid.
Multispectral fluorescence imaging is an emerging imaging modality that can be applied intraoperatively without the need for injection of radiocolloid. For intraoperative fluorescence imaging, two components are needed: a fluorescent agent and a quantitative optical system for intraoperative imaging. As a fluorophore we have used indocyanine green (ICG). ICG has been used for many decades to assess cardiac function, cerebral perfusion and liver perfusion.8 It is an inert drug with a safe pharmaco-biological profile. When excited at around 750 nm, it emits light in the near-infrared spectrum around 800 nm. A custom-made multispectral fluorescence imaging camera system was used.9.
The aim of this video article is to demonstrate the detection of the SLN using intraoperative fluorescence imaging in patients with cervical and vulvar cancer. Fluorescence imaging is used in conjunction with the standard procedure, consisting of radiocolloid and a blue dye. In the future, intraoperative fluorescence imaging might replace the current method and is also easily transferable to other indications like breast cancer and melanoma.
1. Intraoperative Multispectral Fluorescence Camera
2. Optical Contrast Agent Preparation
3. Intraoperative Imaging – Setup and Injection of ICG
4. Representative Results
Fluorescent lymph nodes can be detected with a high signal-to-background ratio. Also, flow of ICG through lymphatic vessels can be monitored allowing real-time lymph node mapping. Results may be influenced by increasing depth of the node, possibly requiring different illumination procedures to achieve detection. Future application of specific tumor targeted fluorescent agents may provide intraoperative detection of a positive SLN with cancer cells using this technology.
Figure 1. The sentinel lymph node (SLN) theory. The SLN is the first draining lymph node(s) from the tumor.
Figure 2. Schematic picture of the multispectral fluorescence camera system (A). The basic setup of the camera system in the operating theatre (B).
Figure 3. Multispectral fluorescence imaging of a lymph node in vulvar cancer. Color image of a lymph node in vivo (A). Fluorescence image of the same lymph node, in vivo (B). Pseudocolor fluorescence image superimposed on the color image (C).
Figure 4. Multispectral fluorescence imaging of a lymph node ex vivo in cervical cancer. Color image of a lymph node ex vivo (A). Fluorescence image of the same lymph node, ex vivo (B). Pseudocolor fluorescence image superimposed on the color image (C).
This video demonstrates the application of multispectral intraoperative fluorescence imaging technology for intraoperative detection of the sentinel lymph node (SLN) in gynecologic oncology. The methodology has certain advantages over the conventional SLN procedure. The injection takes place during the surgical procedure itself with the patient anesthetized rather than a day prior to surgery, which is more patient-friendly, especially in gynecologic cancers. Furthermore, intraoperative imaging provides the surgeon with direct visual feedback of the lymph flow and its drainage pattern to the SLN, rather than indirectly via a Geiger-teller. In cervical cancer, where lymph nodes are located deep in the pelvis, this may help improve detection.
Nonetheless, the greatest significance lies in the step-up approach towards targeted imaging. Targeted fluorescent contrast agents may be fused with tumor-specific antibodies or substrates specifically directed at tumor cells. In this manner, intraoperative fluorescence imaging has great potential to radically alter the current practice of oncologic surgery.
The authors have nothing to disclose.
We are indebted to Mrs. Ina Wesselman for training and planning of the OR personnel.
Material Name | Tip | Company | Catalogue Number | Comment |
---|---|---|---|---|
Indocyanine Green (ICG) | Pulsion Medical Systems AG, Munich, Germany | D-81829 | A solution of ICG in distilled water is used and not in NaCl 0.9%. | |
Patent blue / Bleu patenté | Guerbet, Paris, France | 12322784 | ||
Sterile water for injection | B. Braun | |||
Multispectral fluorescence camera system | Institute for Biological and Medical Imaging (IBMI), Technical University, Munich, Germany and SurgOptix Inc, USA | prototype |