8.2:

Estrutura do RNA

JoVE Core
Moleküler Biyoloji
Bu içeriği görüntülemek için JoVE aboneliği gereklidir.  Oturum açın veya ücretsiz deneme sürümünü başlatın.
JoVE Core Moleküler Biyoloji
RNA Structure

19,787 Views

01:23 min

November 23, 2020

Visão Geral

A estrutura básica do RNA consiste em um açúcar de cinco carbonos e uma de quatro bases de nitrogénio. Embora a maior parte do RNA seja de cadeia simples, ele pode formar estruturas secundárias e terciárias complexas. Tais estruturas desempenham papéis essenciais na regulação da transcrição e da tradução.

Diferentes Tipos de RNA Têm a Mesma Estrutura Básica

Existem três tipos principais de ácido ribonucleico (RNA): RNA mensageiro (mRNA), RNA de transferência (tRNA) e RNA ribossómico (rRNA). Todos os três tipos de RNA consistem em uma cadeia de nucleótidos de cadeia simples. Cada nucleótido é composto por um esqueleto de açúcar de cinco carbonos. As moléculas de carbono de ribose são numeradas de um a cinco. O carbono número cinco carrega um grupo fosfato e o carbono número um uma base de nitrogénio.

Existem quatro bases de nitrogénio no RNA—adenina (A), guanina (G), citosina (C) e uracilo (U). O uracilo é a única base do RNA que não está presente no DNA, que usa timina (T) em vez disso. Durante a transcrição, o RNA é sintetizado a partir de um molde de DNA com base na ligação complementar das novas bases de RNA às bases de DNA; A liga-se a T, G liga-se a C, C liga-se a G, e U liga-se a A.

A Montagem do RNA é Unidirecional

Como no DNA, nucleótidos adjacentes no RNA estão ligados através de ligações fosfodiéster. Estas ligações formam-se entre o grupo fosfato de um nucleótido e o grupo hidroxilo (–OH) na ribose do nucleótido adjacente.

Essa estrutura dá ao RNA a sua direcionalidade—ou seja, as duas extremidades da cadeia de nucleótidos são diferentes. O carbono número cinco da ribose carrega um grupo fosfato não ligado que dá origem ao nome terminal 5’ (ler como cinco prime). A última ribose na outra extremidade da cadeia de nucleótidos tem um grupo de hidroxilo livre (–OH) no carbono número 3; portanto, esta extremidade da molécula de RNA é chamada de terminal 3’. À medida que os nucleótidos são adicionados à cadeia durante a transcrição, o grupo fosfato de 5’ do novo nucleótido reage com o grupo hidroxilo de 3’ da cadeia em crescimento. Portanto, o RNA é sempre montado na direção de 5’ para 3’.

O RNA Pode Formar Estruturas Secundárias

As estruturas secundárias são formadas através da combinação de bases complementares entre nucleótidos distantes no mesmo RNA de cadeia simples. Hairpin loops são formados por emparelhamento complementar de bases entre 5-10 nucleótidos uns dos outros. Stem-loops são formados por emparelhamento de bases que estão separadas por 50 a centenas de nucleótidos. Em procariotas, essas estruturas secundárias funcionam como reguladores transcricionais. Por exemplo, um hairpin loop pode servir como um sinal de terminação de forma a que quando enzimas de transcrição encontram essa estrutura, elas soltam-se do mRNA e a transcrição pára. Stem-loops ou hairpin loops nos terminais 3’ ou 5’ também regulam a estabilidade do mRNA em eucariotas, impedindo a ligação de ribonucleases—enzimas que degradam o RNA.

Estruturas secundárias podem formar estruturas terciárias mais complexas chamadas pseudonós. Os pseudonós são formados quando bases nas regiões de loop de estruturas secundárias interagem com bases complementares fora do loop. Essas estruturas terciárias desempenham papéis essenciais na estrutura e função do RNA.

A Estrutura Secundária e Terciária do tRNA Permite a Síntese de Proteínas

tRNAs servem como moléculas adaptadoras durante a tradução de mRNA para proteínas. Em uma das extremidades, os tRNAs carregam um aminoácido. Na outra extremindade, eles ligam-se a um codão do mRNA—uma sequência de três nucleótidos que codifica um aminoácido específico. As moléculas de tRNA geralmente têm 70-80 nucleótidos de comprimento e dobram-se em uma estrutura de stem-loops que se assemelha a um trevo. Três dos quatro stems têm loops contendo 7-8 bases. O quarto stem não tem loop e inclui os terminais livres de 5’ e 3’ da cadeia do RNA. O terminal 3’ funciona como o local de aceitação de aminoácidos.

A estrutura tridimensional do tRNA é em forma de L, com o local de ligação de aminoácidos em uma extremidade e um anticodão na outra extremidade. Anticodões são sequências de três nucleótidos que são complementares ao codão do mRNA. Esta forma peculiar do tRNA permite que ele se ligue aos ribossomas, onde ocorre a síntese proteica.