Summary

使用修饰的合成寡核苷酸检测核酸代谢酶

Published: July 05, 2024
doi:

Summary

在这里,使用连接酶、核酸酶和聚合酶的实例提出了一种检测核酸代谢酶的方案。该分析利用荧光标记和未标记的寡核苷酸,这些寡核苷酸可以组合形成模拟 RNA 和/或 DNA 损伤或通路中间体的双链体,从而可以表征酶的行为。

Abstract

商业供应商提供的一系列修饰合成寡核苷酸使开发复杂的分析方法来表征核酸代谢酶的不同特性,这些分析可以在任何标准分子生物学实验室中运行。荧光标记的使用使研究人员可以使用标准 PAGE 电泳设备和荧光成像仪使用这些方法,而无需使用放射性材料或需要专为储存和制备放射性材料而设计的实验室,即热实验室。可选添加标准修饰(如磷酸化)可以简化检测设置,而模拟 DNA 损伤或中间体的修饰核苷酸的特异性掺入可用于探测酶行为的特定方面。在这里,展示了使用市售合成寡核苷酸的酶询问 DNA 加工的几个方面的测定的设计和执行。这些包括连接酶连接或核酸酶降解不同 DNA 和 RNA 杂交结构的能力、DNA 连接酶对辅因子的差异使用以及酶 DNA 结合能力的评估。讨论了设计合成核苷酸底物时需要考虑的因素,并提供了一组可用于一系列核酸连接酶、聚合酶和核酸酶测定的基本寡核苷酸。

Introduction

所有生命形式都需要核酸加工酶来执行基本的生物过程,包括复制、转录和 DNA 修复。这些途径的关键酶功能是聚合酶(产生 RNA/DNA 分子的副本)、连接多核苷酸底物的连接酶、降解多核苷酸底物的核酸酶以及解旋酶和拓扑异构酶(熔化核酸双链体或改变其拓扑结构 1,2,3,4,5,6,7,8,9,10 .此外,其中许多酶为克隆、诊断和高通量测序等应用提供了必要的分子工具 11,12,13,14,15。

这些酶的功能特征、动力学和底物特异性可以使用寡核苷酸退火产生的标记 DNA/RNA 底物来确定。传统上,通过在 5′ 链末端引入放射性标记 (32P) 来实现跟踪基材和产品,然后可以通过照相胶片或荧光粉成像系统进行检测16,17。虽然放射性标记底物具有提高实验灵敏度并且不会改变核苷酸化学性质的优势,但使用放射性同位素的潜在健康危害鼓励了非放射性核酸标记的发展,为 DNA 和 RNA 检测提供了更安全的替代方案 18,19,20.其中,荧光检测,包括直接荧光检测、时间分辨荧光和能量转移/荧光猝灭测定,是最通用的 21,22,23,24。广泛的荧光基团阵列可实现 DNA/RNA 底物的不同设计,每个寡核苷酸上具有独特的报告基因25。此外,与放射性同位素相比,荧光团的稳定性使用户能够产生和保存大量荧光标记的 DNA 底物19。这些荧光团标记的底物可以与目标蛋白以及金属和核苷酸辅因子的不同组合一起孵育,以分析结合和/或酶活性。使用带有凝胶成像系统的各种荧光团染料通道可以观察到结合或活性的可视化。由于使用这种技术只能看到荧光标记的寡核苷酸,因此标记的寡核苷酸大小的任何增加或减少都将很容易跟踪。凝胶也可以在之后使用核酸染色染料进行染色,以观察凝胶上存在的所有 DNA 条带。

多核酸连接酶是连接 DNA/RNA 片段的酶,通过在 DNA 的 5′ 磷酸化 DNA 末端和 DNA 的 3′ OH 之间形成磷酸二酯键来催化断裂的密封。根据其核苷酸底物要求,它们可分为两组。高度保守的 NAD 依赖性连接酶存在于所有细菌中26,而结构多样的 ATP 依赖性酶可以通过生命的所有结构域进行鉴定 8,27。DNA 连接酶在复制过程中的冈崎片段加工中起重要作用,并通过密封自发性缺口和修复后留下的缺口参与各种 DNA 修复途径,例如核苷酸和碱基切除修复 8,10。不同的 DNA 连接酶表现出不同的连接 DNA 断裂不同构象的能力,包括双链断裂、双链断裂、错配和间隙,以及 RNA 和 DNA 杂交体 28,29,30。通过将寡核苷酸与 5′ 磷酸盐退火,可以在核酸双链体中生成并列的 5′ 和 3′ 末端,从而组装各种可连接的底物 31,32,33。最常见的分析方法是通过终点测定形式的尿素 PAGE 进行分离;然而,最近的创新包括使用毛细管凝胶电泳,可实现高通量34、质谱分析35,以及均相分子信标分析,可实现时间分辨监测36

连接反应的第一步是连接酶被三磷酸腺苷 (ATP) 或烟酰胺腺嘌呤二核苷酸 (NAD) 使连接酶腺苷酸化,从而产生共价酶中间体。反应的第二步是核酸底物在缺口位点 5′ 端的腺苷酸化,然后连接核酸缺口链。许多在 大肠杆菌 中重组表达的连接酶以腺苷酸化形式纯化,因此能够在不添加核苷酸辅因子的情况下成功连接核酸。这使得很难确定它们连接核酸需要什么特定类型的核苷酸辅因子。除了描述评估 DNA 连接酶活性的测定外,还提出了一种通过使用未标记底物对酶进行去腺苷酸化来可靠地确定辅因子使用的方法。

核酸酶是一大类多样化的 DNA/RNA 修饰酶和催化 RNA,可裂解核酸之间的磷酸二酯键37。核酸酶的功能是 DNA 复制、修复和 RNA 加工所必需的,可以根据它们对 DNA、RNA 或两者的糖特异性进行分类。核酸内切酶水解 DNA/RNA 链内的磷酸二酯键,而核酸外切酶一次水解 DNA/RNA 链从 DNA 的 3′ 或 5′ 末端水解一个核苷酸,并且可以从 DNA 的 3′ 到 5′ 或 5′ 到 3′ 末端进行水解38

虽然许多核酸酶蛋白是非特异性的,可能涉及多个过程,但其他核酸酶蛋白对特定序列或 DNA 损伤具有高度特异性 6,39,40。序列特异性核酸酶用于广泛的生物技术应用,例如克隆、诱变和基因组编辑。这些应用中常用的核酸酶是限制性核酸酶41、锌指核酸酶42、转录激活因子样效应核酸酶,以及最近的 RNA 引导的工程化 CRISPR 核酸酶43。最近已鉴定出损伤特异性核酸酶,例如 EndoMS 核酸酶,它通过其错配特异性 RecB 样核酸酶结构域对 DNA 中的错配具有特异性 5,44。核酸酶活性测定过去是作为放射性标记底物的不连续测定进行的;然而,除了其他缺点外,这些缺点还不允许识别被核酸酶蛋白切割的位点,而使用荧光标记的底物时,这是可能的45,46。最近,已经开发了连续核酸酶检测,其工作原理是使用与不同状态的 DNA 相互作用的不同 DNA 染料;例如,与 dsDNA 相互作用时发出的荧光信号高于未结合状态,或与短 RNA 特异性结合47。其他连续核酸酶检测使用 DNA 发夹,5′ 端有荧光团基团,3′ 端有淬灭基团,因此荧光会随着荧光基团和淬灭基团的分离而降解寡核苷酸48。虽然这些分析允许表征 DNA 降解蛋白质的动力学,但它们需要事先了解酶的功能和底物,并且也仅限于改变 DNA 构象以引起染料结合差异的酶。因此,分离单个核酸酶产物的终点检测仍然需要深入了解由蛋白质活性引起的 DNA 修饰。

这里提出了设计荧光标记的 DNA/RNA 寡核苷酸的详细程序,这些寡核苷酸可以混合和匹配以产生用于测试新型核酸酶、聚合酶和连接酶活性的底物。这组基本寡核苷酸序列的验证简化了实验设计,并有助于经济地分析各种酶功能,而无需购买大量定制底物。提供了使用这些底物运行标准 DNA 加工酶测定的详细程序,使用 DNA 连接酶活性和修饰的示例,描述了用于测定和分析核酸酶和聚合酶的修饰。此外,给出了一种用于高精度测定 DNA 连接酶辅因子特异性的改良测定法,并使用双标记探针来评估多组分连接的组装。最后,讨论了对基本检测形式的修改,使其可用于通过电泳迁移率变化测定 (EMSA) 确定蛋白质-DNA 与相同底物的相互作用。

Protocol

1. 寡核苷酸的设计与购买 注:设计单链寡核苷酸以组装并退火成所需的双链体。双链体中的一条或多条链必须带有荧光部分,用于追踪目标酶的寡核苷酸加工。 表 1 提供了一组可以组装用于一系列活动的单链序列的基本集。 如下所述,掺入目标酶所需的特定修饰。对于 DNA 连接酶底物(图 1):从三个寡核苷酸中?…

Representative Results

通过 DNA 连接酶进行连接当在尿素 PAGE 凝胶上观察时,DNA 连接酶活性将导致荧光标记的寡核苷酸的大小增加。在 表 2 中列出的 DNA 和 RNA 连接的底物的情况下,这相当于大小从 20 nt 增加到 40 nt(图 3A)。最佳酶活性可以通过改变条件来确定,例如温度、蛋白质浓度或孵育时间(图 3B)核苷酸辅因子、金属辅因子(<strong class=…

Discussion

协议中的关键步骤
寡核苷酸设计和购买:购买用于双链体形成的寡核苷酸时,必须考虑序列设计。建议在订购57 之前,使用寡核苷酸分析仪工具预测核苷酸序列的性质,例如 GC 含量、熔解温度、二级结构和二聚化电位。

核酸双链体的组装和退火:制备 RNA/RNA-DNA 双链体时,应注意使用不含 RNase 的试剂和水或添加 RNAse 抑制剂(只要所研究的酶?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

AW 得到了卢瑟福发现奖学金 (20-UOW-004) 的支持。RS 是新西兰 南极邮政奖学金 的获得者。SG 和 UR 感谢特罗姆瑟大学 – 挪威北极大学化学研究所提供的技术支持。

Materials

30% Acrylamide/Bis Solution (29:1) BioRad 1610156
Adenosine triphosphate (ATP) Many suppliers
Ammonium persulfate (APS) Many suppliers
Benchtop centrifuge Many suppliers
Borate Many suppliers
Bromophenol blue Many suppliers
Dithiothreitol (DTT) Many suppliers
Electrophoresis system with circulating water bath Many suppliers
Ethylenediaminetetraacetic acid (EDTA) Many suppliers
Fluoresnence imager, e.g. iBright FL1000 Thermo Fisher Scientific A32752
Formamide Many suppliers
Gel casting system Many suppliers
Heating block Many suppliers
Magnesium Chloride Many suppliers Other metal ions may be preferred depending on the protein studied
Microcentrifuge tubes (1.5 mL) Many suppliers
Micropipettes and tips Many suppliers 1 mL, 0.2 mL, 0.02 mL, 0.002 mL
Nicotinamide adenine dinucleotide (NAD+) Many suppliers
Oligonucleotides Integrated DNA Technologies NA Thermo Fisher, Sigma-Aldrich,  Genscript and others also supply these
pasture pipette Many suppliers
PCR thermocycler Many suppliers
PCR tubes Many suppliers
RNAse away ThermoFisher 7002PK Only needed when working with RNA oligos
RNase AWAY Merck 83931-250ML Surfactant for removal of RNAse contamination on surfaces
RNAse-free water New England Biolabs B1500L Only needed when working with RNA oligos
Sodium Chloride Many suppliers
SUPERase IN RNase inhibitor Thermo Fisher Scientific AM2694 Broad spectrum RNAse inhibitir (protein-based)
SYBR Gold Thermo Fisher Scientific S11494 This may be used to post-stain gels and visualise unlabelled oligonucleotides
Tetramethylethylenediamine (TMED) Many suppliers
Tris, or tris(hydroxymethyl)aminomethane Many suppliers
Ultrapure water (Milli-Q) Merck
urea Many suppliers
Vortex Many suppliers

References

  1. Gao, Y., et al. Structures and operating principles of the replisome. Science. 363 (6429), eaav7003 (2019).
  2. Yang, W., Gao, Y. Translesion and repair DNA polymerases: Diverse structure and mechanism. Annu Rev Biochem. 87, 239-261 (2018).
  3. Lohman, T. M., Fazio, N. T. How does a helicase unwind DNA? Insights from RecBCD Helicase. Bioessays. 40 (6), e1800009 (2018).
  4. Ahdash, Z., et al. Mechanistic insight into the assembly of the HerA-NurA helicase-nuclease DNA end resection complex. Nucleic Acids Res. 45 (20), 12025-12038 (2017).
  5. Wozniak, K. J., Simmons, L. A. Bacterial DNA excision repair pathways. Nat Rev Microbiol. 20 (8), 465-477 (2022).
  6. Zhang, L., Jiang, D., Wu, M., Yang, Z., Oger, P. M. New insights into DNA repair revealed by NucS endonucleases from hyperthermophilic Archaea. Front Microbiol. 11, 1263 (2020).
  7. Saathoff, J. H., Kashammer, L., Lammens, K., Byrne, R. T., Hopfner, K. P. The bacterial Mre11-Rad50 homolog SbcCD cleaves opposing strands of DNA by two chemically distinct nuclease reactions. Nucleic Acids Res. 46 (21), 11303-11314 (2018).
  8. Williamson, A., Leiros, H. S. Structural insight into DNA joining: from conserved mechanisms to diverse scaffolds. Nucleic Acids Res. 48 (15), 8225-8242 (2020).
  9. Caglayan, M. Interplay between DNA polymerases and DNA ligases: Influence on substrate channeling and the fidelity of DNA ligation. J Mol Biol. 431 (11), 2068-2081 (2019).
  10. Shuman, S. DNA ligases: Progress and prospects. J Biol Chem. 284 (26), 17365-17369 (2009).
  11. Lohman, G. J., Tabor, S., Nichols, N. M. DNA ligases. Curr Prot Mol Biol. Chapter 3 (Unit 3.14), (2011).
  12. Rittié, L., Perbal, B. Enzymes used in molecular biology: a useful guide. J Cell Commun Signal. 2 (1-2), 25-45 (2008).
  13. Chandrasegaran, S., Carroll, D. Origins of programmable nucleases for genome engineering. J Mol Biol. 428 (5, Part B), 963-989 (2016).
  14. Aschenbrenner, J., Marx, A. DNA polymerases and biotechnological applications. Curr Opin Biotechnol. 48, 187-195 (2017).
  15. Loenen, W. A. M., Dryden, D. T. F., Raleigh, E. A., Wilson, G. G., Murray, N. E. Highlights of the DNA cutters: a short history of the restriction enzymes. Nucleic Acids Res. 42 (1), 3-19 (2013).
  16. Voytas, D., Ke, N. Detection and quantitation of radiolabeled proteins and DNA in gels and blots. Curr Protoc Immunol. Appendix 3 (A), (2002).
  17. Phillips, D. H. Detection of DNA modifications by the 32P-postlabelling assay. Mutat Res. 378 (1-2), 1-12 (1997).
  18. Huang, C., Yu, Y. T. Synthesis and labeling of RNA in vitro. Curr Prot Mol Biol. Chapter 4, Unit 4.15 (2013).
  19. Ballal, R., Cheema, A., Ahmad, W., Rosen, E. M., Saha, T. Fluorescent oligonucleotides can serve as suitable alternatives to radiolabeled oligonucleotides. J Biomol Tech. 20 (4), 190-194 (2009).
  20. Anderson, B. J., Larkin, C., Guja, K., Schildbach, J. F. Using fluorophore-labeled oligonucleotides to measure affinities of protein-DNA interactions. Meth Enzymol. 450, 253-272 (2008).
  21. Liu, W., et al. Establishment of an accurate and fast detection method using molecular beacons in loop-mediated isothermal amplification assay. Sci Rep. 7 (1), 40125 (2017).
  22. Ma, C., et al. Simultaneous detection of kinase and phosphatase activities of polynucleotide kinase using molecular beacon probes. Anal Biochem. 443 (2), 166-168 (2013).
  23. Li, J., Cao, Z. C., Tang, Z., Wang, K., Tan, W. Molecular beacons for protein-DNA interaction studies. Meth Mol Biol. 429, 209-224 (2008).
  24. Yang, C. J., Li, J. J., Tan, W. Using molecular beacons for sensitive fluorescence assays of the enzymatic cleavage of nucleic acids. Meth Mol Biol. 335, 71-81 (2006).
  25. Nikiforov, T. T., Roman, S. Fluorogenic DNA ligase and base excision repair enzyme assays using substrates labeled with single fluorophores. Anal Biochem. 477, 69-77 (2015).
  26. Pergolizzi, G., Wagner, G. K., Bowater, R. P. Biochemical and structural characterisation of DNA ligases from bacteria and Archaea. Biosci Rep. 36 (5), 00391 (2016).
  27. Martin, I. V., MacNeill, S. A. ATP-dependent DNA ligases. Genome Biol. 3 (4), REVIEWS3005 (2002).
  28. Bilotti, K., et al. Mismatch discrimination and sequence bias during end-joining by DNA ligases. Nucleic Acids Res. 50 (8), 4647-4658 (2022).
  29. Bauer, R. J., et al. Comparative analysis of the end-joining activity of several DNA ligases. PLoS One. 12 (12), e0190062 (2017).
  30. Lohman, G. J. S., Zhang, Y., Zhelkovsky, A. M., Cantor, E. J., Evans, T. C. Efficient DNA ligation in DNA-RNA hybrid helices by Chlorella virus DNA ligase. Nucleic Acids Res. 42 (3), 1831-1844 (2014).
  31. Bullard, D. R., Bowater, R. P. Direct comparison of nick-joining activity of the nucleic acid ligases from bacteriophage T4. Biochem J. 398 (1), 135-144 (2006).
  32. Magnet, S., Blanchard, J. S. Mechanistic and kinetic study of the ATP-dependent DNA ligase of Neisseria meningitidis. Biochemistry. 43 (3), 710-717 (2004).
  33. Williamson, A., Grgic, M., Leiros, H. S. DNA binding with a minimal scaffold: structure-function analysis of Lig E DNA ligases. Nucleic Acids Res. 46 (16), 8616-8629 (2018).
  34. Lohman, G. J., et al. A high-throughput assay for the comprehensive profiling of DNA ligase fidelity. Nucleic Acids Res. 44 (2), e14 (2016).
  35. Kim, J., Mrksich, M. Profiling the selectivity of DNA ligases in an array format with mass spectrometry. Nucleic Acids Res. 38 (1), e2 (2010).
  36. Tang, Z. W., et al. Real-time monitoring of nucleic acid ligation in homogenous solutions using molecular beacons. Nucleic Acids Res. 31 (23), e148 (2003).
  37. Yang, W. Nucleases: diversity of structure, function and mechanism. Q Rev Biophys. 44 (1), 1-93 (2011).
  38. Marti, T. M., Fleck, O. DNA repair nucleases. Cell Mol Life Sci. 61 (3), 336-354 (2004).
  39. Wang, B. B., et al. Review of DNA repair enzymes in bacteria: With a major focus on AddAB and RecBCD. DNA Repair. 118, 103389 (2022).
  40. Pidugu, L. S., et al. Structural insights into the mechanism of base excision by MBD4. J Mol Biol. 433 (15), 167097 (2021).
  41. Roberts, R. J. How restriction enzymes became the workhorses of molecular biology. Proc Natl Acad Sci U S A. 102 (17), 5905-5908 (2005).
  42. Miller, J. C., et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol. 25 (7), 778-785 (2007).
  43. Kim, H., Kim, J. S. A guide to genome engineering with programmable nucleases. Nat Rev Genet. 15 (5), 321-334 (2014).
  44. Takemoto, N., Numata, I., Su’etsugu, M., Miyoshi-Akiyama, T. Bacterial EndoMS/NucS acts as a clamp-mediated mismatch endonuclease to prevent asymmetric accumulation of replication errors. Nucleic Acids Res. 46 (12), 6152-6165 (2018).
  45. Reardon, J. T., Sancar, A. Molecular anatomy of the human excision nuclease assembled at sites of DNA damage. Mol Cell Biol. 22 (16), 5938-5945 (2002).
  46. Kunkel, T. A., Soni, A. Exonucleolytic proofreading enhances the fidelity of DNA synthesis by chick embryo DNA polymerase-gamma. J Biol Chem. 263 (9), 4450-4459 (1988).
  47. Sheppard, E. C., Rogers, S., Harmer, N. J., Chahwan, R. A universal fluorescence-based toolkit for real-time quantification of DNA and RNA nuclease activity. Sci Rep. 9 (1), 8853 (2019).
  48. Li, J. J., Geyer, R., Tan, W. Using molecular beacons as a sensitive fluorescence assay for enzymatic cleavage of single-stranded DNA. Nucleic Acids Res. 28 (11), E52 (2000).
  49. Schneider, C. A., Rasband, W. S., Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat Meth. 9 (7), 671-675 (2012).
  50. Sharma, J. K., et al. Methods for competitive enrichment and evaluation of superior DNA ligases. Meth Enzymol. 644, 209-225 (2020).
  51. Rzoska-Smith, E., Stelzer, R., Monterio, M., Cary, S. C., Williamson, A. DNA repair enzymes of the Antarctic Dry Valley metagenome. Front Microbiol. 14, 1156817 (2023).
  52. Williamson, A., Pedersen, H. Recombinant expression and purification of an ATP-dependent DNA ligase from Aliivibrio salmonicida. Protein Expres Purif. 97, 29-36 (2014).
  53. Akey, D., et al. Crystal structure and nonhomologous end-joining function of the ligase component of Mycobacterium DNA ligase D. J Biol Chem. 281 (19), 13412-13423 (2006).
  54. Kim, D. J., et al. ATP-dependent DNA ligase from Archaeoglobus fulgidus displays a tightly closed conformation. Acta Crystallogr Sect F Struct Biol Cryst Commun. 65 (Pt 6), 544-550 (2009).
  55. Nishida, H., Kiyonari, S., Ishino, Y., Morikawa, K. The closed structure of an archaeal DNA ligase from Pyrococcus furiosus. J Mol Biol. 360 (5), 956-967 (2006).
  56. Gundesø, S., et al. R2D ligase: Unveiling a novel DNA ligase with surprising DNA-to-RNA ligation activity. Biotechnol J. 19 (3), e2300711 (2024).
  57. Hendling, M., Barišić, I. In silico design of DNA oligonucleotides: Challenges and approaches. Comput Struct Biotechnol J. 17, 1056-1065 (2019).
  58. Green, M. R., Sambrook, J. How to win the battle with RNase. Cold Spring Harb Prot. 2019 (2), (2019).
  59. Summer, H., Grämer, R., Dröge, P. Denaturing urea polyacrylamide gel electrophoresis (Urea PAGE). J Vis Exp. (32), 1485 (2009).
  60. Smith, D. R. Gel Electrophoresis of DNA. Mol Biometh Handbook. , 17-33 (1998).
  61. Lorenz, T. C. Polymerase chain reaction: basic protocol plus troubleshooting and optimization strategies. J Vis Exp. (63), e3998 (2012).
  62. Rousseau, M., et al. Characterisation and engineering of a thermophilic RNA ligase from Palaeococcus pacificus. Nucleic Acids Res. 52 (7), 3924-3937 (2024).
  63. Kestemont, D., Herdewijn, P., Renders, M. Enzymatic synthesis of backbone-modified oligonucleotides using T4 DNA ligase. Curr Prot Chem Biol. 11 (2), e62 (2019).
  64. Farell, E. M., Alexandre, G. Bovine serum albumin further enhances the effects of organic solvents on increased yield of polymerase chain reaction of GC-rich templates. BMC Res Notes. 5, 257 (2012).
  65. Nazarenko, I., Pires, R., Lowe, B., Obaidy, M., Rashtchian, A. Effect of primary and secondary structure of oligodeoxyribonucleotides on the fluorescent properties of conjugated dyes. Nucleic Acids Res. 30 (9), 2089-2195 (2002).
This article has been published
Video Coming Soon
Keep me updated:

.

Cite This Article
Stelzer, R., Rzoska-Smith, E., Gundesø, S., Rothweiler, U., Williamson, A. Using Modified Synthetic Oligonucleotides to Assay Nucleic Acid-Metabolizing Enzymes. J. Vis. Exp. (209), e66930, doi:10.3791/66930 (2024).

View Video