Summary
English

Automatically Generated

Strategies for Assessing Autistic-Like Behaviors in Mice

Published: September 20, 2024
doi:

Summary

Rodent models are valuable tools for studying core behaviors related to autism spectrum disorder (ASD). In this article, we expound on two behavioral tests for modeling the core features of ASD in mice: self-grooming, which assesses repetitive behavior, and the three-chamber social interaction test, which documents social impairments.

Abstract

Autism spectrum disorder (ASD) is a neurobiologically complex condition with a heterogeneous genetic etiology. Clinically, ASD is diagnosed by social communication impairments and restrictive or repetitive behaviors, such as hand flapping or lining up objects. These behavioral patterns can be reliably observed in mouse models with ASD-linked genetic mutations, making them highly useful tools for studying the underlying cellular and molecular mechanisms in ASD. Understanding how genetic changes affect the neurobiology and behaviors observed in ASD will facilitate the development of novel targeted therapeutic compounds to ameliorate core behavioral impairments. Our lab has employed several protocols encompassing well-described training and testing procedures that reflect a wide range of behavioral deficits related to ASD. Here, we detail two assays to study the core features of ASD in mouse models: self-grooming (a measure of repetitive behavior) and the three-chamber social interaction test (a measure of social interaction approach and preference for social novelty).

Introduction

Autism spectrum disorder (ASD) is a developmental brain disorder that manifests social communication or interaction impairments and restricted, repetitive patterns of behaviors or interests1,2. In 2022, approximately 1 in 100 children were diagnosed with ASD globally3. According to the Centers for Disease Control and Prevention (CDC, USA), the prevalence of ASD has increased by 30% since 2008 and is up more than 2-fold since 20004,5. Individuals with ASD may also exhibit co-morbidities, such as intellectual disability (ID) (35.2%, IQ ≤ 70), attention-deficit/hyperactivity disorder (ADHD) (50%-70%), and other genetic syndromes2,4,6.

The use of animal models in ASD research, especially rodents, has provided significant insights into the impact of various environmental factors, including diet, drugs, exercise, and enrichment7,8,9,10, as well as genetic mutations such as Shank, Fmr1, Mecp2, Pten, and Tsc mutant11,12,13, on ASD symptoms. Mouse models are commonly used to investigate ASD due to their social nature and shared genetic, biochemical, and electrophysiological features with humans. For instance, by deletion of a specific gene (such as Shank3, Fmr1, Cntnap2, and Pten), aberrant social and repetitive behaviors can be recapitulated, providing strong validity of the study14,15,16. Here, we provide protocols for studying parallels between animal genetic models and human ASD symptoms17. We describe the self-grooming and three-chamber social interaction test, which reflect two core symptoms in ASD patients, namely restricted, repetitive patterns of behavior and social interaction (communication) impairments, respectively.

Based on the DSM-V (Diagnostic and Statistical Manual of Mental Disorders of the American Psychiatric Association 5th Edition) and ICD-11 (International Classification of Diseases 11th Revision), ASD patients engage in restricted, repetitive, and stereotyped behavior patterns, in particular, non-functional body-focused repetitive behaviors (BFRBs), such as rocking, stimming, nail-biting, hair pulling, skin picking, or toe-walking18,19. In animals, repetitive behavior is manifested by prolonged and repetitive self-grooming. Grooming is one of the most common innate activities among rodents, with approximately 40% of their wake time spent on grooming20,21. It is instinctive for mice to lick their skin or fur to remove foreign dirt from the body surface, which serves to maintain body cleanliness, prevent injury, remove parasites, and regulate temperature. Grooming is categorized into two types: social grooming (allo-grooming), involving grooming by another mouse, and self-grooming. Self-grooming shows a stereotyped and conserved sequencing pattern consisting of four stages (mostly discrete and non-sequential)22,23. In stage I (Elliptical stroke), mice initiate grooming by first licking both paws and then grooming around the nose with their paws. In stage II (Unilateral stroke), mice use their paws to wipe their face asymmetrically. In stage III (Bilateral stroke), mice symmetrically wipe their head and ears. In stage IV (Body licking), mice transition to body licking by moving their head backward and may extend grooming to the tail and genitals. When mice are individually placed in a clear cage, self-grooming behavior can be readily recognized and observed. Mice increase self-grooming behavior when faced with stress, pain, or social disruption, rendering the self-grooming test crucial when researching neurological disorders22. Different mouse models of ASD, including those with genetic mutations (such as Fmr1−/y, Shank3B−/-, NL1−/−), pharmacological interventions (such as DO34, PolyI:C), and specific inbred strains (like BTBR and C58/J), have demonstrated excessive repetitive self-grooming behavior24,25,26,27.

Alterations in social behavior serve as one of the criteria for assessing ASD. According to the DSM-V and the ICD-11, ASD patients display persistent social communication and social interaction impairments18,19. These may manifest in verbal and nonverbal communication deficits (i.e., abnormal eye contact, gestures, and facial expression), lack of sharing interest and emotions with others, unawareness of social contextual cues, or difficulties developing relationships. In line with the social impairment symptoms, various behavioral tasks have been designed and optimized to assess social interactions in mice, such as the direct social interaction test, the three-chamber social approach and preference for social novelty test, and analysis of ultrasonic vocalizations (USVs)16,28. The three-chamber social interaction test is an extensively used experiment for evaluating ASD-related behaviors17,29,30,31. The apparatus comprises three connected chambers; the left and right chambers contain a wire cage that may be either empty or occupied by a mouse, enabling the test mouse to interact freely with both cages. Two measurements help assess different aspects of social behavior in the test mouse during the three-chamber experiment. First, the test mouse is scored for the time spent interacting with the empty cage (novel object) versus a cage that contains a novel mouse. This part of the task provides insight into the mouse's sociability. Next, an unfamiliar mouse is placed into the previously empty wire cage. The time difference in interaction of the test mouse between the unfamiliar and familiar mouse measures the preference for social novelty. In this part of the task, a control mouse prefers to interact with an unfamiliar rather than the previously encountered mouse, which was already present in the sociability part of the test. Deficits in social interaction and decreased motivation of interacting with novel mice are generally found in mouse model of ASD. The three chamber test has proven robust since its invention. It has been used to study social phenotypes in various mouse models of ASD, including Fmr1−/−, Shank3B−/-, Cntnap2−/−, and the BTBR inbred strain32,33,34,35,36.

The two tests utilize naturally occurring, spontaneous behavior of mice as meritorious tools for studying ASD-like behavior. Since they are considered low-stress tests, it is feasible to conduct both tests within the same group of mice to measure ASD-like behavior, with the self-grooming test being performed first and the three-chamber social interaction test on subsequent days. The protocols we provide present an essential tool for the assessment of ASD-like behavior and the development of new therapeutics29,30,31. Ultimately, they would contribute to improving outcomes for individuals affected by ASD.

Protocol

All procedures and experiments involving animal subjects were approved by the Facility Animal Care Committee (FACC) regulations, which follow the guidelines established by the Canadian Council on Animal Care, the McGill University Animal Care Committee, and the NIH Office of Laboratory Animal Welfare (OLAW). The Public Health Service (PHS) Assurance number for McGill University is F-16-00005(A5006-01). 1. Animal preparation Test mice: Select 2-3 month (8 to 13 week…

Representative Results

The mammalian target of rapamycin (mTOR) serves crucial roles in the central nervous system (CNS) by regulating de novo protein synthesis and repressing autophagy43. Dysregulation of the mTOR pathway and synaptic protein synthesis has been implicated in ASD28. Genome-wide studies on ASD patients have identified various ASD-associated gene mutations, including those affecting proteins involved in mTOR complex 1 (mTORC1) signaling, such as phosphatase and tensin homo…

Discussion

Most etiological causes, pathological changes, and biological markers of ASD are not known or available. ASD diagnosis is primarily based on two established sets of clinical symptoms: persistent deficits in social communication and excessive repetitive behaviors18,19,55. Given that ASD is a spectrum disorder encompassing a wide range of symptoms, it is challenging to fully reproduce ASD symptoms in experimental animals. Neverthe…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank Dr. Karim Nader (Department of Psychology, McGill University) for providing access to the animal behavior facility.

Materials

1/4'' Teklad Corncob Bedding  Harlan, TEKLAD 7092-7097 The raw stock for corncob bedding products  is 100% corncob. No other components or additives are used. 
HD Video Recording Cameratraditional Video Camera Sony HDRCX405 50 Mbps XAVC S1 1920 x 1080 at 60P, AVCHD and MP4 codecs. 30x Optical / 60x Clear Image Zoom to get closer to the action. 26.8 mm wide angle ZEISS Lens.
Nitrile Powder Free Examination Gloves Aurelia, Transform ASTM D6319-00 Tested for use with Chemotherapy drugs per ASTM D6978
Rodent Plastic Cage Bottoms Ancare AN75PLF AN75 Mouse 7½” W x 11½” L x 5” H
TÅGARP floor lamp and bulbs  IEKA 604.640.49 Bulbs are 23 W 120 V.
Ugo Basile Sociability Apparatus Stoelting  60450 The Sociability Apparatus (3-chambered social test) is a valuable tool to study social behaviour in mice.
Versa-Clean  Fisherbrand PVCLN04 Cleaning agent
Whiteboard and  Low Odor Dry Erase Marker EXPO NA Dry erase markers in bold black

References

  1. Esler, A., Ruble, L. DSM-5 diagnostic criteria for autism spectrum disorder with implications for school psychologists. Int J Sch Educ Psychol. 3 (1), 1-15 (2015).
  2. Lord, C., et al. Autism spectrum disorder. Nat Rev Dis Primers. 6 (1), 5 (2020).
  3. Zeidan, J., et al. Global prevalence of autism: A systematic review update. Autism Res. 15 (5), 778-790 (2022).
  4. Maenner, M. J., et al. Prevalence and characteristics of autism spectrum disorder among children aged 8 years – autism and developmental disabilities monitoring network, 11 sites, United States, 2018. MMWR Surveill Summ. 70 (11), 1-16 (2021).
  5. Maenner, M. J., et al. Prevalence and characteristics of autism spectrum disorder among children aged 8 years- Autism and developmental disabilities monitoring network, 11 Sites, United States, 2020. MMWR Surveill Summ. 72 (2), 1-14 (2023).
  6. Hours, C., Recasens, C., Baleyte, J. M. ASD and ADHD co-morbidity: What are we talking about. Front Psychiatry. 13, 837424 (2022).
  7. Denmark, A., et al. The effects of chronic social defeat stress on mouse self-grooming behavior and its patterning. Behav Brain Res. 208 (2), 553-559 (2010).
  8. Sheng, Z., et al. Fentanyl induces autism-like behaviours in mice by hypermethylation of the glutamate receptor gene grin2b. Br J Anaesth. 129 (4), 544-554 (2022).
  9. Ruskin, D. N., et al. Ketogenic diet improves core symptoms of autism in BTBR mice. PLoS One. 8 (6), e65021 (2013).
  10. Queen, N. J., et al. Environmental enrichment improves metabolic and behavioral health in the btbr mouse model of autism. Psychoneuroendocrinology. 111, 104476 (2020).
  11. Provenzano, G., Zunino, G., Genovesi, S., Sgadó, P., Bozzi, Y. Mutant mouse models of autism spectrum disorders. Dis Markers. 33 (5), 225-239 (2012).
  12. Ey, E., Leblond, C. S., Bourgeron, T. Behavioral profiles of mouse models for autism spectrum disorders. Autism Res. 4 (1), 5-16 (2011).
  13. Jiang, Y. -. H., Ehlers, M. D. Modeling autism by shank gene mutations in mice. Neuron. 78 (1), 8-27 (2013).
  14. Arakawa, H. From multisensory assessment to functional interpretation of social behavioral phenotype in transgenic mouse models for autism spectrum disorders. Front Psychiatry. 11, 592408 (2020).
  15. Kazdoba, T. M., Leach, P. T., Crawley, J. N. Behavioral phenotypes of genetic mouse models of autism. Genes Brain Behav. 15 (1), 7-26 (2016).
  16. Silverman, J. L., Yang, M., Lord, C., Crawley, J. N. Behavioural phenotyping assays for mouse models of autism. Nat Rev Neurosci. 11 (7), 490-502 (2010).
  17. Crawley, J. N. Designing mouse behavioral tasks relevant to autistic-like behaviors. Ment Retard Dev Disabil Res Rev. 10 (4), 248-258 (2004).
  18. APA PsycNet. . Diagnostic and Statistical Manual of Mental Disorders: DSM-5th Edition. , (2022).
  19. World Health Organization. . ICD-11 for Mortality and Morbidity Statistics. 2024, (2023).
  20. Spruijt, B. M., Van Hooff, J. A., Gispen, W. H. Ethology and neurobiology of grooming behavior. Physiol Rev. 72 (3), 825-852 (1992).
  21. Bolles, R. C. Grooming behavior in the rat. J Comp Physiol Psychol. 53, 306-310 (1960).
  22. Kalueff, A. V., et al. Neurobiology of rodent self-grooming and its value for translational neuroscience. Nat Rev Neurosci. 17 (1), 45-59 (2016).
  23. Kalueff, A. V., Aldridge, J. W., Laporte, J. L., Murphy, D. L., Tuohimaa, P. Analyzing grooming microstructure in neurobehavioral experiments. Nat Protoc. 2 (10), 2538-2544 (2007).
  24. Gandhi, T., Lee, C. C. Neural mechanisms underlying repetitive behaviors in rodent models of autism spectrum disorders. Front Cell Neurosci. 14, 592710 (2020).
  25. Fyke, W., Alarcon, J. M., Velinov, M., Chadman, K. K. Pharmacological inhibition of the primary endocannabinoid producing enzyme, dgl-α, induces autism spectrum disorder-like and co-morbid phenotypes in adult C57bl/J mice. Autism Res. 14 (7), 1375-1389 (2021).
  26. Kazlauskas, N., Robinson-Agramonte, M. D. L. A., Depino, A. M. Neuroinflammation in Animal Models of Autism. Translational Approaches to Autism Spectrum Disorder. , (2015).
  27. Ryan, B. C., Young, N. B., Crawley, J. N., Bodfish, J. W., Moy, S. S. Social deficits, stereotypy and early emergence of repetitive behavior in the C58/J inbred mouse strain. Behav Brain Res. 208 (1), 178-188 (2010).
  28. Crawley, J. N. Mouse behavioral assays relevant to the symptoms of autism. Brain Pathol. 17 (4), 448-459 (2007).
  29. Stoppel, D. C., Mccamphill, P. K., Senter, R. K., Heynen, A. J., Bear, M. F. Mglur5 negative modulators for fragile x: Treatment resistance and persistence. Front Psychiatry. 12, 718953 (2021).
  30. Kazdoba, T. M., et al. Translational mouse models of autism: Advancing toward pharmacological therapeutics. Curr Top Behav Neurosci. 28, 1-52 (2016).
  31. Gantois, I., et al. Metformin ameliorates core deficits in a mouse model of fragile x syndrome. Nat Med. 23 (6), 674-677 (2017).
  32. Meyza, K. Z., Blanchard, D. C. The BTBR mouse model of idiopathic autism – current view on mechanisms. Neurosci Biobehav Rev. 76 (Pt A), 99-110 (2017).
  33. Peça, J., et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature. 472 (7344), 437-442 (2011).
  34. Crawley, J. N. Twenty years of discoveries emerging from mouse models of autism. Neurosci Biobehav Rev. 146, 105053 (2023).
  35. Wang, Z., et al. Effects of fmr1 gene mutations on sex differences in autism-like behavior and dendritic spine development in mice and transcriptomic studies. Neuroscience. 534, 16-28 (2023).
  36. Peñagarikano, O., et al. Absence of cntnap2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell. 147 (1), 235-246 (2011).
  37. Chari, T., Griswold, S., Andrews, N. A., Fagiolini, M. The stage of the estrus cycle is critical for interpretation of female mouse social interaction behavior. Front Behav Neurosci. 14, 113 (2020).
  38. Zeng, P. Y., Tsai, Y. H., Lee, C. L., Ma, Y. K., Kuo, T. H. Minimal influence of estrous cycle on studies of female mouse behaviors. Front Mol Neurosci. 16, 1146109 (2023).
  39. Gray, S., Hurst, J. L. The effects of cage cleaning on aggression within groups of male laboratory mice. Anim Behav. 49 (3), 821-826 (1995).
  40. Rasmussen, S., Miller, M. M., Filipski, S. B., Tolwani, R. J. Cage change influences serum corticosterone and anxiety-like behaviors in the mouse. J Am Assoc Lab Anim Sci. 50 (4), 479-483 (2011).
  41. . Ugo basile sociability apparatus Available from: https://stoeltingco.com/Neuroscience/Ugo-Basile-Sociability-Apparatus~9840 (2024)
  42. Heinz, D. E., et al. Exploratory drive, fear, and anxiety are dissociable and independent components in foraging mice. Translational Psychiatry. 11 (1), 318 (2021).
  43. Takei, N., Nawa, H. mTOR signaling and its roles in normal and abnormal brain development. Front Mol Neurosci. 7, 28 (2014).
  44. Jeste, S. S., Sahin, M., Bolton, P., Ploubidis, G. B., Humphrey, A. Characterization of autism in young children with tuberous sclerosis complex. J Child Neurol. 23 (5), 520-525 (2008).
  45. Kwon, C. H., et al. Pten regulates neuronal arborization and social interaction in mice. Neuron. 50 (3), 377-388 (2006).
  46. Napoli, I., et al. The fragile x syndrome protein represses activity-dependent translation through cyfip1, a new 4e-bp. Cell. 134 (6), 1042-1054 (2008).
  47. Auerbach, B. D., Osterweil, E. K., Bear, M. F. Mutations causing syndromic autism define an axis of synaptic pathophysiology. Nature. 480 (7375), 63-68 (2011).
  48. Winden, K. D., Ebrahimi-Fakhari, D., Sahin, M. Abnormal mTOR activation in autism. Annu Rev Neurosci. 41, 1-23 (2018).
  49. Sharma, A., et al. Dysregulation of mTOR signaling in fragile X syndrome. J Neurosci. 30 (2), 694-702 (2010).
  50. Amorim, I. S., Lach, G., Gkogkas, C. G. The role of the eukaryotic translation initiation factor 4E (eIF4E) in neuropsychiatric disorders. Front Genet. 9, 561 (2018).
  51. Pause, A., et al. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature. 371 (6500), 762-767 (1994).
  52. Banko, J. L., et al. The translation repressor 4e-bp2 is critical for eIF4F complex formation, synaptic plasticity, and memory in the hippocampus. J Neurosci. 25 (42), 9581-9590 (2005).
  53. Gkogkas, C. G., et al. Autism-related deficits via dysregulated eIF4E-dependent translational control. Nature. 493 (7432), 371-377 (2013).
  54. Wiebe, S., et al. Inhibitory interneurons mediate autism-associated behaviors via 4E-BP2. Proc Natl Acad Sci U S A. 116 (36), 18060-18067 (2019).
  55. Lord, C., Elsabbagh, M., Baird, G., Veenstra-Vanderweele, J. Autism spectrum disorder. Lancet. 392 (10146), 508-520 (2018).
  56. Willner, P. Validation criteria for animal models of human mental disorders: Learned helplessness as a paradigm case. Prog Neuropsychopharmacol Biol Psychiatry. 10 (6), 677-690 (1986).
  57. Jabarin, R., Netser, S., Wagner, S. Beyond the three-chamber test: Toward a multimodal and objective assessment of social behavior in rodents. Mol Autism. 13 (1), 41 (2022).
  58. Shoji, H., Takao, K., Hattori, S., Miyakawa, T. Age-related changes in behavior in c57bl/6j mice from young adulthood to middle age. Mol Brain. 9 (1), 11 (2016).
  59. Arakawa, H. Revisiting sociability: Factors facilitating approach and avoidance during the three-chamber test. Physiol Behav. 272, 114373 (2023).
  60. Rein, B., Ma, K., Yan, Z. A standardized social preference protocol for measuring social deficits in mouse models of autism. Nat Protoc. 15 (10), 3464-3477 (2020).
  61. Monteiro, P., Feng, G. Shank proteins: Roles at the synapse and in autism spectrum disorder. Nat Rev Neurosci. 18 (3), 147-157 (2017).
  62. Sala, C., Vicidomini, C., Bigi, I., Mossa, A., Verpelli, C. Shank synaptic scaffold proteins: Keys to understanding the pathogenesis of autism and other synaptic disorders. J Neurochem. 135 (5), 849-858 (2015).
  63. Enginar, N., Hatipoğlu, &. #. 3. 0. 4. ;., Fırtına, M. Evaluation of the acute effects of amitriptyline and fluoxetine on anxiety using grooming analysis algorithm in rats. Pharmacol Biochem Behav. 89 (3), 450-455 (2008).
  64. Silverman, J. L., Tolu, S. S., Barkan, C. L., Crawley, J. N. Repetitive self-grooming behavior in the BTBR mouse model of autism is blocked by the mGluR5 antagonist MPEP. Neuropsychopharmacology. 35 (4), 976-989 (2010).
  65. Chadman, K. K. Fluoxetine but not risperidone increases sociability in the btbr mouse model of autism. Pharmacol Biochem Behav. 97 (3), 586-594 (2011).
  66. Kalueff, A. V., Tuohimaa, P. The grooming analysis algorithm discriminates between different levels of anxiety in rats: Potential utility for neurobehavioural stress research. J Neurosci Methods. 143 (2), 169-177 (2005).
  67. Tartaglione, A. M., et al. Aberrant self-grooming as early marker of motor dysfunction in a rat model of Huntington’s disease. Behav Brain Res. 313, 53-57 (2016).
  68. Wilson, C. A., Koenig, J. I. Social interaction and social withdrawal in rodents as readouts for investigating the negative symptoms of schizophrenia. Eur Neuropsychopharmacol. 24 (5), 759-773 (2014).
  69. Samsom, J. N., Wong, A. H. Schizophrenia and depression co-morbidity: What we have learned from animal models. Front Psychiatry. 6, 13 (2015).
  70. Planchez, B., Surget, A., Belzung, C. Animal models of major depression: Drawbacks and challenges. J Neural Transm (Vienna). 126 (11), 1383-1408 (2019).
  71. Ang, M. J., Lee, S., Kim, J. C., Kim, S. H., Moon, C. Behavioral tasks evaluating schizophrenia-like symptoms in animal models: A recent update. Curr Neuropharmacol. 19 (5), 641-664 (2021).
  72. Samson, A. L., et al. Mousemove: An open source program for semi-automated analysis of movement and cognitive testing in rodents. Sci Rep. 5 (1), 16171 (2015).
  73. Barbera, G., et al. An open-source capacitive touch sensing device for three chamber social behavior test. MethodsX. 7, 101024 (2020).

Tags

This article has been published
Video Coming Soon
Keep me updated:

.

Cite This Article
Huang, Z., Wiebe, S., Marsal-García, L., Gantois, I., Sonenberg, N. Strategies for Assessing Autistic-Like Behaviors in Mice. J. Vis. Exp. (211), e66846, doi:10.3791/66846 (2024).

View Video