Summary

Isolamento de mitocôndrias para análise de supercomplexos mitocondriais a partir de pequenas amostras de cultura de tecidos e células

Published: May 03, 2024
doi:

Summary

Este protocolo descreve uma técnica para a análise de supercomplexos respiratórios quando apenas pequenas quantidades de amostras estão disponíveis.

Abstract

Nas últimas décadas, as evidências acumuladas sobre a existência de supercomplexos respiratórios (SCs) mudaram nossa compreensão da organização da cadeia de transporte de elétrons mitocondrial, dando origem à proposta do “modelo de plasticidade”. Este modelo postula a coexistência de diferentes proporções de CTs e complexos dependendo do tecido ou do estado metabólico celular. A natureza dinâmica da montagem em SCs permitiria que as células otimizassem o uso dos combustíveis disponíveis e a eficiência da transferência de elétrons, minimizando a geração de espécies reativas de oxigênio e favorecendo a capacidade das células de se adaptarem às mudanças ambientais.

Mais recentemente, anormalidades na montagem de SC foram relatadas em diferentes doenças, como distúrbios neurodegenerativos (doença de Alzheimer e Parkinson), Síndrome de Barth, síndrome de Leigh ou câncer. O papel das alterações da montagem do CS na progressão da doença ainda precisa ser confirmado. No entanto, a disponibilidade de quantidades suficientes de amostras para determinar o status da montagem do SC é muitas vezes um desafio. Isso acontece com biópsias ou amostras de tecido que são pequenas ou precisam ser divididas para múltiplas análises, com culturas de células que têm crescimento lento ou vêm de dispositivos microfluídicos, com algumas culturas primárias ou células raras, ou quando o efeito de determinados tratamentos caros tem que ser analisado (com nanopartículas, compostos muito caros, etc.). Nesses casos, é necessário um método eficiente e fácil de aplicar. Este trabalho apresenta um método adaptado para obter frações mitocondriais enriquecidas a partir de pequenas quantidades de células ou tecidos para analisar a estrutura e função de SCs mitocondriais por eletroforese nativa seguida de ensaios de atividade em gel ou western blot.

Introduction

Supercomplexos (SCs) são associações supramoleculares entre complexos individuais da cadeia respiratória 1,2. Desde a identificação inicial das CTs e a descrição de sua composição pelo grupo de Schägger 2,3, posteriormente confirmada por outros grupos, estabeleceu-se que elas contêm complexos respiratórios I, III e IV (IC, CIII e CIV, respectivamente) em diferentes estequiometrias. Duas populações principais de SCs podem ser definidas, aquelas contendo CI (e CIII sozinho ou CIII e CIV) e com peso molecular muito alto (MW, começando ~ 1,5 MDa para o SC menor: CI + CIII2) e aquelas contendo CIII e CIV, mas não CI, com tamanho muito menor (como CIII2 + CIV com ~ 680 kDa). Esses SCs coexistem na membrana mitocondrial interna com complexos livres, também em diferentes proporções. Assim, enquanto o CI é encontrado principalmente em suas formas associadas (ou seja, em SCs: ~ 80% no coração bovino e mais de 90% em muitos tipos de células humanas)3, o CIV é muito abundante em sua forma livre (mais de 80% no coração bovino), com o CIII mostrando uma distribuição mais equilibrada (~ 40% em sua forma livre mais abundante, como um dímero, em coração bovino).

Embora sua existência seja agora geralmente aceita, seu papel preciso ainda está em debate 4,5,6,7,8,9,10. De acordo com o modelo de plasticidade, podem existir diferentes proporções de CTs e complexos individuais, dependendo do tipo de célula ou do estado metabólico 1,7,11. Essa natureza dinâmica da montagem permitiria que as células regulassem o uso dos combustíveis disponíveis e a eficiência do sistema de fosforilação oxidativa (OXPHOS) em resposta às mudanças ambientais 4,5,7. As CCs também podem contribuir para controlar a taxa de geração de espécies reativas de oxigênio e participar da estabilização e renovação de complexos individuais 4,12,13,14. Modificações do estado de montagem do CS têm sido descritas em associação com diferentes situações fisiológicas e patológicas15,16 e com o processo de envelhecimento17.

Assim, mudanças nos padrões de SC têm sido descritas em leveduras dependendo da fonte de carbono utilizada para o crescimento2 e em células de mamíferos cultivadas quando a glicose é substituída por galactose4. Modificações também foram relatadas no fígado de camundongos após jejum8 e em astrócitos quando a oxidação de ácidos graxos mitocondriais é bloqueada18. Além disso, uma diminuição ou alterações nas CSs e OXPHOS foram encontradas na síndrome de Barth19, insuficiência cardíaca20, vários distúrbios metabólicos21 e neurológicos 22,23,24 e diferentes tumores 25,26,27,28. Se essas alterações na montagem e nos níveis de CS são uma causa primária ou representam efeitos secundários nessas situações patológicas ainda está sob investigação15,16. Diferentes metodologias podem fornecer informações sobre a montagem e função dos SCs; Estes incluem medições de atividade 8,29, análise ultraestrutural30,31 e proteômica32,33. Uma alternativa útil que está sendo cada vez mais empregada e é o ponto de partida para algumas das metodologias mencionadas anteriormente é a determinação direta do status de montagem do SC por eletroforese nativa azul (BN) desenvolvida para esse fim pelo grupo de Schägger34,35.

Essa abordagem requer procedimentos reprodutíveis e eficientes para obter e solubilizar membranas mitocondriais e pode ser complementada por outras técnicas, como análise de atividade em gel (IGA), eletroforese de segunda dimensão e western blot (WB). Uma limitação nos estudos sobre a dinâmica do SC por eletroforese de BN pode ser a quantidade de células iniciais ou amostras de tecido. Apresentamos uma série de protocolos para a análise da montagem e função do SC, adaptados dos métodos de grupo de Schägger, que podem ser aplicados a amostras de células ou tecidos frescos ou congelados a partir de apenas 20 mg de tecido.

Protocol

NOTA: A composição de todos os meios de cultura e tampões é especificada na Tabela 1 e os detalhes relacionados a todos os materiais e reagentes usados neste protocolo estão listados na Tabela de Materiais. 1. Isolamento de mitocôndrias de cultura de células NOTA: O volume mínimo de células analisadas foi de ~ 30-50 μL de células empacotadas (etapa 1.4). Isso pode corresponder aproximadamente a pelo menos d…

Representative Results

Os rendimentos das mitocôndrias obtidos seguindo os protocolos descritos acima variam dependendo de vários fatores, como a linha celular ou tipo de tecido, a natureza das amostras (ou seja, se são usados tecidos frescos ou congelados) ou a eficiência do processo de homogeneização. Os rendimentos esperados de mitocôndrias de diferentes linhagens celulares e tecidos são coletados na Tabela 2. Uma vez obtidas as frações mitocondriais, o próximo passo é a análise do padrão das CTs respiratória…

Discussion

As adaptações metodológicas introduzidas nos protocolos aqui descritos visam evitar perdas e aumentar o rendimento, mantendo as atividades do complexo mitocondrial (o que é crucial quando a disponibilidade de quantidades suficientes de amostras está comprometida) e reproduzir o padrão esperado de SCs do tecido ou da linhagem celular (ver Figura 2C). Com esse objetivo e como não é necessária uma alta pureza mitocondrial para detectar adequadamente os SCs, o número de etapas, tempos …

Disclosures

The authors have nothing to disclose.

Acknowledgements

Este trabalho foi apoiado pela bolsa número “PGC2018-095795-B-I00” do Ministério de Ciência e Inovação (https://ciencia.sede.gob.es/) e pelas bolsas “Grupo de Referência: E35_17R” e bolsa número “LMP220_21” da Diputación General de Aragón (DGA) (https://www.aragon.es/) para PF-S e RM-L.

Materials

Acetic acid PanReac 131008
Aminocaproic acid Fluka Analytical 7260
ATP Sigma-Aldrich A2383
Bis Tris Acrons Organics 327721000
Bradford assay Biorad 5000002
Coomassie Blue G-250 Serva 17524
Coomassie Blue R-250 Merck 1125530025
Cytochrome c Sigma-Aldrich C2506
Diamino  benzidine (DAB) Sigma-Aldrich D5637
Digitonin Sigma-Aldrich D5628
EDTA PanReac 131669
EGTA Sigma-Aldrich E3889
Fatty acids free BSA Roche 10775835001
Glycine PanReac A1067
Homogenizer Teflon pestle Deltalab 196102
Imidazole Sigma-Aldrich I2399
K2HPO4 PanReac 121512
KH2PO4 PanReac 121509
Mannitol Sigma-Aldrich M4125
Methanol Labkem MTOL-P0P
MgSO4 PanReac 131404
Mini Trans-Blot Cell BioRad 1703930
MOPS Sigma-Aldrich M1254
MTCO1 Monoclonal Antibody Invitrogen 459600
NaCl Sigma-Aldrich S9888
NADH Roche 10107735001
NativePAGE 3 to 12% Mini Protein Gels Invitrogen BN1001BOX
NativePAGE Cathode Buffer Additive (20x) Invitrogen BN2002
NativePAGE Running Buffer (20x)  Invitrogen BN2001
NDUFA9 Monoclonal Antibody Invitrogen 459100
Nitroblue tetrazolium salt (NBT) Sigma-Aldrich N6876
Pb(NO3)2 Sigma-Aldrich 228621
PDVF Membrane Amersham 10600023
Phenazine methasulfate (PMS) Sigma-Aldrich P9625
Pierce ECL Substrate Thermo Scientific 32106
PMSF Merck PMSF-RO
SDHA Monoclonal Antibody Invitrogen 459200
Sodium succinate Sigma-Aldrich S2378
Streptomycin/penicillin PAN biotech P06-07100
Sucrose Sigma-Aldrich S3089
Tris PanReac A2264
UQCRC1 Monoclonal Antibody Invitrogen 459140
XCell SureLock Mini-Cell Invitrogen  EI0001

References

  1. Acin-Perez, R., Fernandez-Silva, P., Peleato, M. L., Perez-Martos, A., Enriquez, J. A. Respiratory active mitochondrial supercomplexes. Mol Cell. 32 (4), 529-539 (2008).
  2. Schagger, H., Pfeiffer, K. Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J. 19 (8), 1777-1783 (2000).
  3. Schagger, H., Pfeiffer, K. The ratio of oxidative phosphorylation complexes I-V in bovine heart mitochondria and the composition of respiratory chain supercomplexes. J Biol Chem. 276 (41), 37861-37867 (2001).
  4. Acin-Perez, R., Enriquez, J. A. The function of the respiratory supercomplexes: the plasticity model. Biochim Biophys Acta. 1837 (4), 444-450 (2014).
  5. Cogliati, S., Cabrera-Alarcon, J. L., Enriquez, J. A. Regulation and functional role of the electron transport chain supercomplexes. Biochem Soc Trans. 49 (6), 2655-2668 (2021).
  6. Genova, M. L., Lenaz, G. Functional role of mitochondrial respiratory supercomplexes. Biochim Biophys Acta. 1837 (4), 427-443 (2014).
  7. Kohler, A., Barrientos, A., Fontanesi, F., Ott, M. The functional significance of mitochondrial respiratory chain supercomplexes. EMBO Rep. 24 (11), e57092 (2023).
  8. Lapuente-Brun, E., et al. Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science. 340 (6140), 1567-1570 (2013).
  9. Milenkovic, D., et al. Preserved respiratory chain capacity and physiology in mice with profoundly reduced levels of mitochondrial respirasomes. Cell Metab. 35 (10), 1799-1813 (2023).
  10. Vercellino, I., Sazanov, L. A. The assembly, regulation and function of the mitochondrial respiratory chain. Nat Rev Mol Cell Biol. 23 (2), 141-161 (2022).
  11. Moreno-Loshuertos, R., Fernández-Silva, P., Ostojic, S. . Clinical Bioenergetics. , 3-60 (2021).
  12. Fernandez-Vizarra, E., Ugalde, C. Cooperative assembly of the mitochondrial respiratory chain. Trends Biochem Sci. 47 (12), 999-1008 (2022).
  13. Javadov, S., Jang, S., Chapa-Dubocq, X. R., Khuchua, Z., Camara, A. K. S. Mitochondrial respiratory supercomplexes in mammalian cells: structural versus functional role. Journal of Molecular Medicine. 99 (1), 57-73 (2021).
  14. Lopez-Fabuel, I., et al. Complex I assembly into supercomplexes determines differential mitochondrial ROS production in neurons and astrocytes. Proc Natl Acad Sci U S A. 113 (46), 13063-13068 (2016).
  15. Mukherjee, S., Ghosh, A. Molecular mechanism of mitochondrial respiratory chain assembly and its relation to mitochondrial diseases. Mitochondrion. 53, 1-20 (2020).
  16. Nesci, S., et al. Molecular and supramolecular structure of the mitochondrial oxidative phosphorylation system: implications for pathology. Life (Basel). 11 (3), 242 (2021).
  17. Frenzel, M., Rommelspacher, H., Sugawa, M. D., Dencher, N. A. Ageing alters the supramolecular architecture of OxPhos complexes in rat brain cortex. Exp Gerontol. 45 (7-8), 563-572 (2010).
  18. Morant-Ferrando, B., et al. Fatty acid oxidation organizes mitochondrial supercomplexes to sustain astrocytic ROS and cognition. Nat Metab. 5 (8), 1290-1302 (2023).
  19. McKenzie, M., Lazarou, M., Thorburn, D. R., Ryan, M. T. Mitochondrial respiratory chain supercomplexes are destabilized in Barth Syndrome patients. J Mol Biol. 361 (3), 462-469 (2006).
  20. Rosca, M. G., et al. Cardiac mitochondria in heart failure: decrease in respirasomes and oxidative phosphorylation. Cardiovasc Res. 80 (1), 30-39 (2008).
  21. Ramirez-Camacho, I., Garcia-Nino, W. R., Flores-Garcia, M., Pedraza-Chaverri, J., Zazueta, C. Alteration of mitochondrial supercomplexes assembly in metabolic diseases. Biochim Biophys Acta Mol Basis Dis. 1866 (12), 165935 (2020).
  22. Gonzalez-Rodriguez, P., et al. Disruption of mitochondrial complex I induces progressive parkinsonism. Nature. 599 (7886), 650-656 (2021).
  23. Novack, G. V., Galeano, P., Castano, E. M., Morelli, L. Mitochondrial supercomplexes: physiological organization and dysregulation in age-related neurodegenerative disorders. Front Endocrinol (Lausanne). 11, 600 (2020).
  24. Ramirez-Camacho, I., Flores-Herrera, O., Zazueta, C. The relevance of the supramolecular arrangements of the respiratory chain complexes in human diseases and aging. Mitochondrion. 47, 266-272 (2019).
  25. Hollinshead, K. E. R., et al. Respiratory Supercomplexes Promote Mitochondrial Efficiency and Growth in Severely Hypoxic Pancreatic Cancer. Cell Rep. 33 (1), 108231 (2020).
  26. Ikeda, K., et al. Mitochondrial supercomplex assembly promotes breast and endometrial tumorigenesis by metabolic alterations and enhanced hypoxia tolerance. Nat Commun. 10 (1), 4108 (2019).
  27. Kamada, S., Takeiwa, T., Ikeda, K., Horie, K., Inoue, S. Emerging roles of COX7RP and mitochondrial oxidative phosphorylation in breast cancer. Front Cell Dev Biol. 10, 717881 (2022).
  28. Marco-Brualla, J., et al. Mutations in the ND2 subunit of mitochondrial complex I are sufficient to confer increased tumorigenic and metastatic potential to cancer cells. Cancers (Basel). 11 (7), 1027 (2019).
  29. Moreno-Loshuertos, R., et al. How hot can mitochondria be? Incubation at temperatures above 43 degrees C induces the degradation of respiratory complexes and supercomplexes in intact cells and isolated mitochondria. Mitochondrion. 69, 83-94 (2023).
  30. Vonck, J., Schafer, E. Supramolecular organization of protein complexes in the mitochondrial inner membrane. Biochim Biophys Acta. 1793 (1), 117-124 (2009).
  31. Althoff, T., Mills, D. J., Popot, J. L., Kuhlbrandt, W. Arrangement of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1. EMBO J. 30 (22), 4652-4664 (2011).
  32. Cogliati, S., et al. Mechanism of super-assembly of respiratory complexes III and IV. Nature. 539 (7630), 579-582 (2016).
  33. Gonzalez-Franquesa, A., et al. Mass-spectrometry-based proteomics reveals mitochondrial supercomplexome plasticity. Cell Rep. 35 (8), 109180 (2021).
  34. Wittig, I., Schagger, H. Features and applications of blue-native and clear-native electrophoresis. Proteomics. 8 (19), 3974-3990 (2008).
  35. Wittig, I., Schagger, H. Native electrophoretic techniques to identify protein-protein interactions. Proteomics. 9 (23), 5214-5223 (2009).
  36. Garcia-Cazarin, M. L., Snider, N. N., Andrade, F. H. Mitochondrial isolation from skeletal muscle. J Vis Exp. (49), e2452 (2011).
  37. Lai, N., et al. Isolation of mitochondrial subpopulations from skeletal muscle: Optimizing recovery and preserving integrity. Acta Physiol (Oxf). 225 (2), e13182 (2019).
  38. Schagger, H. Native electrophoresis for isolation of mitochondrial oxidative phosphorylation protein complexes. Methods Enzymol. 260, 190-202 (1995).
  39. Wittig, I., Braun, H. P., Schagger, H. Blue native PAGE. Nat Protoc. 1 (1), 418-428 (2006).
  40. Chomyn, A., et al. Platelet-mediated transformation of mtDNA-less human cells: analysis of phenotypic variability among clones from normal individuals–and complementation behavior of the tRNALys mutation causing myoclonic epilepsy and ragged red fibers. Am J Hum Genet. 54 (6), 966-974 (1994).
  41. Moreno-Loshuertos, R., et al. Differences in reactive oxygen species production explain the phenotypes associated with common mouse mitochondrial DNA variants. Nat Genet. 38 (11), 1261-1268 (2006).
  42. Fernández-Vizarra, E., Fernández-Silva, P., Enríquez, J. A., Celis, J. E. . Cell Biology (Third Edition). , 69-77 (2006).
  43. Cogliati, S., Herranz, F., Ruiz-Cabello, J., Enríquez, J. A. Digitonin concentration is determinant for mitochondrial supercomplexes analysis by BlueNative page. Biochim Biophys Acta Bioenerg. 1862 (1), 148332 (2021).

Play Video

Cite This Article
Moreno-Loshuertos, R., Fernández-Silva, P. Isolation of Mitochondria for Mitochondrial Supercomplex Analysis from Small Tissue and Cell Culture Samples . J. Vis. Exp. (207), e66771, doi:10.3791/66771 (2024).

View Video