Summary

从小组织和细胞培养样品中分离线粒体用于线粒体超复合物分析

Published: May 03, 2024
doi:

Summary

该方案描述了一种在只有少量样品可用时分析呼吸超复合物的技术。

Abstract

在过去的几十年里,关于呼吸超复合物 (SCs) 存在的证据积累改变了我们对线粒体电子传递链组织的理解,从而产生了“可塑性模型”的提出。该模型假设不同比例的 SCs 和复合物共存,具体取决于组织或细胞代谢状态。SCs 中组装的动态性质将使电池能够优化可用燃料的使用和电子转移的效率,最大限度地减少活性氧的产生并有利于电池适应环境变化的能力。

最近,在神经退行性疾病(阿尔茨海默病和帕金森病)、巴斯综合征、Leigh 综合征或癌症等不同疾病中报道了 SC 组装异常。SC 组装改变在疾病进展中的作用仍需确认。然而,获得足够数量的样品来确定 SC 组装状态通常是一个挑战。这种情况发生在活检或组织样本较小或必须分开进行多次分析、细胞培养物生长缓慢或来自微流控设备、一些原代培养物或稀有细胞,或者必须分析特定昂贵处理的效果(使用纳米颗粒、非常昂贵的化合物等)。在这些情况下,需要一种有效且易于应用的方法。本文提出了一种适用于从少量细胞或组织获得富集线粒体组分的方法,以通过天然电泳然后进行凝胶内活性测定或蛋白质印迹来分析线粒体 SCs 的结构和功能。

Introduction

超复合物 (SC) 是单个呼吸链复合物之间的超分子关联 1,2。自 Schägger 2,3 组最初鉴定 SC 并描述其组成以来,后来被其他组证实,确定它们在不同的化学计量中含有呼吸复合物 I、III 和 IV(分别为 CI、CIII 和 CIV)。可以定义两个主要的 SC 群体,一种含有 CI(单独含有 CIII 或 CIII 和 CIV)且分子量非常高(MW,较小的 SC 从 ~1.5 MDa 开始:CI + CIII2),另一种含有 CIII 和 CIV 但不含有 CIV,尺寸小得多(例如 CIII2 + CIV,具有 ~680 kDa)。这些 SC 在线粒体内膜中与游离复合物共存,比例也不同。因此,虽然 CI 主要以相关形式存在(即在 SC 中:~80% 在牛心脏中,在许多人类细胞类型中超过 90%)3,但 CIV 的游离形式非常丰富(在牛心脏中超过 80%),而 CIII 显示出更平衡的分布(~40% 在其更丰富的游离形式中, 作为二聚体,在牛心中)。

虽然它们的存在现在被普遍接受,但它们的确切作用仍在争论 4,5,6,7,8,9,10。根据可塑性模型,根据细胞类型或代谢状态,可以存在不同比例的 SCs 和单个复合物 1,7,11。组装的这种动态性质将使细胞能够调节可用燃料的使用和氧化磷酸化 (OXPHOS) 系统的效率,以响应环境变化 4,5,7。SCs 还有助于控制活性氧的生成速率,并参与单个复合物的稳定和周转 4,12,13,14。已经描述了 SC 组装状态的改变与不同的生理和病理情况15,16 以及衰老过程17 有关。

因此,当葡萄糖被半乳糖4 取代时,酵母中 SC 模式的变化已经在酵母中被描述为2 和培养的哺乳动物细胞中的变化。空腹后小鼠肝脏8 和线粒体脂肪酸氧化被阻断时星形胶质细胞中也报道了修饰18。此外,在 Barth 综合征19、心力衰竭20、几种代谢21 和神经系统222324 疾病以及不同的肿瘤25262728 中发现 SCs 和 OXPHOS 的减少或改变.在这些病理情况下,SC 组装和水平的这些改变是主要原因还是代表次要影响,仍在研究中15,16。不同的方法可以提供有关 SC 的组装和功能的信息;这些包括活性测量 8,29、超微结构分析30,31 和蛋白质组学32,33。一种越来越多地被采用的有用替代方案是 Schägger 小组为此开发的蓝色天然 (BN) 电泳34,35 的起点,这是前面提到的一些方法的起点。

这种方法需要可重现且高效的程序来获得和溶解线粒体膜,并且可以通过其他技术进行补充,例如凝胶内活性分析 (IGA)、二维电泳和蛋白质印迹 (WB)。BN 电泳对 SC 动力学的研究的一个限制可能是起始细胞或组织样品的数量。我们提出了一系列用于分析 SC 组装和功能的方案,这些方案改编自 Schägger 的小组方法,可应用于新鲜或冷冻的细胞或组织样品,起始剂量低至 20 mg 组织。

Protocol

注: 表 1 中指定了所有培养基和缓冲液的成分,与本协议中使用的所有材料和试剂相关的详细信息列在 材料表中。 1. 从细胞培养物中分离线粒体 注意:检测的细胞的最小体积为 ~30-50 μL 的浓缩细胞(步骤 1.4)。这大约相当于至少两个或三个 100 mm 细胞培养板或一个汇合度为 80-90% 的 150 mm 板,具体取决于细胞类型(L9…

Representative Results

按照上述方案获得的线粒体产量取决于多种因素,例如细胞系或组织类型、样品的性质(即,是否使用新鲜或冷冻组织)或均质化过程的效率。 表 2 中收集了来自不同细胞系和组织的线粒体的预期产量。获得线粒体组分后,下一步是呼吸 SCs 模式的分析,这是在粗线粒体样品溶解和通过 BN-PAGE 电泳分离后进行的,然后是 IGA 分析或 WB 免疫检测。 图 1 显示了培养?…

Discussion

此处描述的方案中引入的方法学调整旨在避免损失并提高产量,同时保持线粒体复合物活性(当足够量的样品的可用性受到损害时,这一点至关重要)并复制组织或细胞系预期的 SCs 模式(参见 图 2C).为此,由于不需要高线粒体纯度来正确检测 SC,因此只要有可能,步骤、时间和体积的数量就会减少。

因此,在通过低速离心匀浆和去除细胞核和未破碎的…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了 Ministerio de Ciencia e Innovación (https://ciencia.sede.gob.es/) 的资助号“PGC2018-095795-B-I00”和阿拉贡总局 (DGA) (https://www.aragon.es/) 对 PF-S 和 RM-L 的资助号“Grupo de Referencia: E35_17R”和资助号“LMP220_21”。

Materials

Acetic acid PanReac 131008
Aminocaproic acid Fluka Analytical 7260
ATP Sigma-Aldrich A2383
Bis Tris Acrons Organics 327721000
Bradford assay Biorad 5000002
Coomassie Blue G-250 Serva 17524
Coomassie Blue R-250 Merck 1125530025
Cytochrome c Sigma-Aldrich C2506
Diamino  benzidine (DAB) Sigma-Aldrich D5637
Digitonin Sigma-Aldrich D5628
EDTA PanReac 131669
EGTA Sigma-Aldrich E3889
Fatty acids free BSA Roche 10775835001
Glycine PanReac A1067
Homogenizer Teflon pestle Deltalab 196102
Imidazole Sigma-Aldrich I2399
K2HPO4 PanReac 121512
KH2PO4 PanReac 121509
Mannitol Sigma-Aldrich M4125
Methanol Labkem MTOL-P0P
MgSO4 PanReac 131404
Mini Trans-Blot Cell BioRad 1703930
MOPS Sigma-Aldrich M1254
MTCO1 Monoclonal Antibody Invitrogen 459600
NaCl Sigma-Aldrich S9888
NADH Roche 10107735001
NativePAGE 3 to 12% Mini Protein Gels Invitrogen BN1001BOX
NativePAGE Cathode Buffer Additive (20x) Invitrogen BN2002
NativePAGE Running Buffer (20x)  Invitrogen BN2001
NDUFA9 Monoclonal Antibody Invitrogen 459100
Nitroblue tetrazolium salt (NBT) Sigma-Aldrich N6876
Pb(NO3)2 Sigma-Aldrich 228621
PDVF Membrane Amersham 10600023
Phenazine methasulfate (PMS) Sigma-Aldrich P9625
Pierce ECL Substrate Thermo Scientific 32106
PMSF Merck PMSF-RO
SDHA Monoclonal Antibody Invitrogen 459200
Sodium succinate Sigma-Aldrich S2378
Streptomycin/penicillin PAN biotech P06-07100
Sucrose Sigma-Aldrich S3089
Tris PanReac A2264
UQCRC1 Monoclonal Antibody Invitrogen 459140
XCell SureLock Mini-Cell Invitrogen  EI0001

References

  1. Acin-Perez, R., Fernandez-Silva, P., Peleato, M. L., Perez-Martos, A., Enriquez, J. A. Respiratory active mitochondrial supercomplexes. Mol Cell. 32 (4), 529-539 (2008).
  2. Schagger, H., Pfeiffer, K. Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J. 19 (8), 1777-1783 (2000).
  3. Schagger, H., Pfeiffer, K. The ratio of oxidative phosphorylation complexes I-V in bovine heart mitochondria and the composition of respiratory chain supercomplexes. J Biol Chem. 276 (41), 37861-37867 (2001).
  4. Acin-Perez, R., Enriquez, J. A. The function of the respiratory supercomplexes: the plasticity model. Biochim Biophys Acta. 1837 (4), 444-450 (2014).
  5. Cogliati, S., Cabrera-Alarcon, J. L., Enriquez, J. A. Regulation and functional role of the electron transport chain supercomplexes. Biochem Soc Trans. 49 (6), 2655-2668 (2021).
  6. Genova, M. L., Lenaz, G. Functional role of mitochondrial respiratory supercomplexes. Biochim Biophys Acta. 1837 (4), 427-443 (2014).
  7. Kohler, A., Barrientos, A., Fontanesi, F., Ott, M. The functional significance of mitochondrial respiratory chain supercomplexes. EMBO Rep. 24 (11), e57092 (2023).
  8. Lapuente-Brun, E., et al. Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science. 340 (6140), 1567-1570 (2013).
  9. Milenkovic, D., et al. Preserved respiratory chain capacity and physiology in mice with profoundly reduced levels of mitochondrial respirasomes. Cell Metab. 35 (10), 1799-1813 (2023).
  10. Vercellino, I., Sazanov, L. A. The assembly, regulation and function of the mitochondrial respiratory chain. Nat Rev Mol Cell Biol. 23 (2), 141-161 (2022).
  11. Moreno-Loshuertos, R., Fernández-Silva, P., Ostojic, S. . Clinical Bioenergetics. , 3-60 (2021).
  12. Fernandez-Vizarra, E., Ugalde, C. Cooperative assembly of the mitochondrial respiratory chain. Trends Biochem Sci. 47 (12), 999-1008 (2022).
  13. Javadov, S., Jang, S., Chapa-Dubocq, X. R., Khuchua, Z., Camara, A. K. S. Mitochondrial respiratory supercomplexes in mammalian cells: structural versus functional role. Journal of Molecular Medicine. 99 (1), 57-73 (2021).
  14. Lopez-Fabuel, I., et al. Complex I assembly into supercomplexes determines differential mitochondrial ROS production in neurons and astrocytes. Proc Natl Acad Sci U S A. 113 (46), 13063-13068 (2016).
  15. Mukherjee, S., Ghosh, A. Molecular mechanism of mitochondrial respiratory chain assembly and its relation to mitochondrial diseases. Mitochondrion. 53, 1-20 (2020).
  16. Nesci, S., et al. Molecular and supramolecular structure of the mitochondrial oxidative phosphorylation system: implications for pathology. Life (Basel). 11 (3), 242 (2021).
  17. Frenzel, M., Rommelspacher, H., Sugawa, M. D., Dencher, N. A. Ageing alters the supramolecular architecture of OxPhos complexes in rat brain cortex. Exp Gerontol. 45 (7-8), 563-572 (2010).
  18. Morant-Ferrando, B., et al. Fatty acid oxidation organizes mitochondrial supercomplexes to sustain astrocytic ROS and cognition. Nat Metab. 5 (8), 1290-1302 (2023).
  19. McKenzie, M., Lazarou, M., Thorburn, D. R., Ryan, M. T. Mitochondrial respiratory chain supercomplexes are destabilized in Barth Syndrome patients. J Mol Biol. 361 (3), 462-469 (2006).
  20. Rosca, M. G., et al. Cardiac mitochondria in heart failure: decrease in respirasomes and oxidative phosphorylation. Cardiovasc Res. 80 (1), 30-39 (2008).
  21. Ramirez-Camacho, I., Garcia-Nino, W. R., Flores-Garcia, M., Pedraza-Chaverri, J., Zazueta, C. Alteration of mitochondrial supercomplexes assembly in metabolic diseases. Biochim Biophys Acta Mol Basis Dis. 1866 (12), 165935 (2020).
  22. Gonzalez-Rodriguez, P., et al. Disruption of mitochondrial complex I induces progressive parkinsonism. Nature. 599 (7886), 650-656 (2021).
  23. Novack, G. V., Galeano, P., Castano, E. M., Morelli, L. Mitochondrial supercomplexes: physiological organization and dysregulation in age-related neurodegenerative disorders. Front Endocrinol (Lausanne). 11, 600 (2020).
  24. Ramirez-Camacho, I., Flores-Herrera, O., Zazueta, C. The relevance of the supramolecular arrangements of the respiratory chain complexes in human diseases and aging. Mitochondrion. 47, 266-272 (2019).
  25. Hollinshead, K. E. R., et al. Respiratory Supercomplexes Promote Mitochondrial Efficiency and Growth in Severely Hypoxic Pancreatic Cancer. Cell Rep. 33 (1), 108231 (2020).
  26. Ikeda, K., et al. Mitochondrial supercomplex assembly promotes breast and endometrial tumorigenesis by metabolic alterations and enhanced hypoxia tolerance. Nat Commun. 10 (1), 4108 (2019).
  27. Kamada, S., Takeiwa, T., Ikeda, K., Horie, K., Inoue, S. Emerging roles of COX7RP and mitochondrial oxidative phosphorylation in breast cancer. Front Cell Dev Biol. 10, 717881 (2022).
  28. Marco-Brualla, J., et al. Mutations in the ND2 subunit of mitochondrial complex I are sufficient to confer increased tumorigenic and metastatic potential to cancer cells. Cancers (Basel). 11 (7), 1027 (2019).
  29. Moreno-Loshuertos, R., et al. How hot can mitochondria be? Incubation at temperatures above 43 degrees C induces the degradation of respiratory complexes and supercomplexes in intact cells and isolated mitochondria. Mitochondrion. 69, 83-94 (2023).
  30. Vonck, J., Schafer, E. Supramolecular organization of protein complexes in the mitochondrial inner membrane. Biochim Biophys Acta. 1793 (1), 117-124 (2009).
  31. Althoff, T., Mills, D. J., Popot, J. L., Kuhlbrandt, W. Arrangement of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1. EMBO J. 30 (22), 4652-4664 (2011).
  32. Cogliati, S., et al. Mechanism of super-assembly of respiratory complexes III and IV. Nature. 539 (7630), 579-582 (2016).
  33. Gonzalez-Franquesa, A., et al. Mass-spectrometry-based proteomics reveals mitochondrial supercomplexome plasticity. Cell Rep. 35 (8), 109180 (2021).
  34. Wittig, I., Schagger, H. Features and applications of blue-native and clear-native electrophoresis. Proteomics. 8 (19), 3974-3990 (2008).
  35. Wittig, I., Schagger, H. Native electrophoretic techniques to identify protein-protein interactions. Proteomics. 9 (23), 5214-5223 (2009).
  36. Garcia-Cazarin, M. L., Snider, N. N., Andrade, F. H. Mitochondrial isolation from skeletal muscle. J Vis Exp. (49), e2452 (2011).
  37. Lai, N., et al. Isolation of mitochondrial subpopulations from skeletal muscle: Optimizing recovery and preserving integrity. Acta Physiol (Oxf). 225 (2), e13182 (2019).
  38. Schagger, H. Native electrophoresis for isolation of mitochondrial oxidative phosphorylation protein complexes. Methods Enzymol. 260, 190-202 (1995).
  39. Wittig, I., Braun, H. P., Schagger, H. Blue native PAGE. Nat Protoc. 1 (1), 418-428 (2006).
  40. Chomyn, A., et al. Platelet-mediated transformation of mtDNA-less human cells: analysis of phenotypic variability among clones from normal individuals–and complementation behavior of the tRNALys mutation causing myoclonic epilepsy and ragged red fibers. Am J Hum Genet. 54 (6), 966-974 (1994).
  41. Moreno-Loshuertos, R., et al. Differences in reactive oxygen species production explain the phenotypes associated with common mouse mitochondrial DNA variants. Nat Genet. 38 (11), 1261-1268 (2006).
  42. Fernández-Vizarra, E., Fernández-Silva, P., Enríquez, J. A., Celis, J. E. . Cell Biology (Third Edition). , 69-77 (2006).
  43. Cogliati, S., Herranz, F., Ruiz-Cabello, J., Enríquez, J. A. Digitonin concentration is determinant for mitochondrial supercomplexes analysis by BlueNative page. Biochim Biophys Acta Bioenerg. 1862 (1), 148332 (2021).

Play Video

Cite This Article
Moreno-Loshuertos, R., Fernández-Silva, P. Isolation of Mitochondria for Mitochondrial Supercomplex Analysis from Small Tissue and Cell Culture Samples . J. Vis. Exp. (207), e66771, doi:10.3791/66771 (2024).

View Video