Summary

Paradigmes pour l’évaluation comportementale dans le modèle de trouble du spectre autistique de la drosophile

Published: September 06, 2024
doi:

Summary

Le trouble du spectre autistique (TSA) est associé à un comportement social et communicatif altéré et à l’émergence d’un comportement répétitif. Pour étudier l’interrelation entre les gènes TSA et les déficits comportementaux dans le modèle de la drosophile , cinq paradigmes comportementaux sont décrits dans cet article pour mesurer l’espacement social, l’agressivité, la parade nuptiale, le toilettage et le comportement d’habituation.

Abstract

Le trouble du spectre autistique (TSA) englobe un groupe hétérogène de troubles neurodéveloppementaux avec des symptômes comportementaux communs, notamment des déficits dans l’interaction sociale et la capacité de communication, des comportements restreints ou répétitifs accrus, ainsi que, dans certains cas, des troubles d’apprentissage et un déficit moteur. La drosophile a servi d’organisme modèle sans précédent pour la modélisation d’un grand nombre de maladies humaines. Comme de nombreux gènes ont été impliqués dans les TSA, les mouches des fruits sont apparues comme un moyen puissant et efficace de tester les gènes supposément impliqués dans la maladie. Comme des centaines de gènes, avec des rôles fonctionnels variés, sont impliqués dans les TSA, un seul modèle génétique de mouche TSA est irréalisable ; au lieu de cela, les mutants génétiques individuels, les inactivations de gènes ou les études basées sur la surexpression des homologues de mouches des gènes associés aux TSA sont les moyens courants d’obtenir des informations sur les voies moléculaires sous-jacentes à ces produits géniques. Une foule de techniques comportementales sont disponibles chez la drosophile qui permettent de lire facilement les déficits dans des composants comportementaux spécifiques. Le dosage de l’espace social et les essais d’agression et de parade nuptiale chez les mouches se sont révélés utiles pour évaluer les défauts d’interaction sociale ou de communication. Le comportement de toilettage chez les mouches est une excellente lecture du comportement répétitif. Le test d’habituation est utilisé chez les mouches pour estimer la capacité d’apprentissage de l’habituation, qui s’avère être affectée chez certains patients atteints de TSA. Une combinaison de ces paradigmes comportementaux peut être utilisée pour faire une évaluation approfondie de l’état pathologique humain de type TSA chez les mouches. En utilisant des mouches mutantes Fmr1 , récapitulant le syndrome de l’X fragile chez l’homme et l’inactivation de la rangée homologue POGZ dans les neurones des mouches, nous avons montré des déficits quantifiables dans l’espacement social, l’agressivité, le comportement de parade nuptiale, le comportement de toilettage et l’accoutumance. Ces paradigmes comportementaux sont démontrés ici dans leurs formes les plus simples et les plus directes, avec l’hypothèse que cela faciliterait leur utilisation généralisée pour la recherche sur les TSA et d’autres troubles neurodéveloppementaux dans les modèles de mouches.

Introduction

Les troubles du spectre autistique (TSA) englobent un groupe hétérogène de troubles neurologiques. Elle comprend une gamme de troubles neuro-développementaux complexes caractérisés par des déficits multicontextuels et persistants dans la communication sociale et l’interaction sociale et la présence de modèles et d’intérêts comportementaux et d’activités restreints et répétitifs1. Selon l’Organisation mondiale de la santé (OMS), 1 enfant sur 100 est diagnostiqué avec un TSA dans le monde avec un ratio hommes-femmes de 4,22. La maladie devient évidente au cours de la deuxième ou de la troisième année de vie. Les enfants autistes montrent un manque d’intérêt pour la réciprocité socio-émotionnelle, la communication non verbale et les compétences relationnelles. Ils présentent des comportements répétitifs tels que des mouvements moteurs stéréotypés, un suivi de routine inflexible et ritualisé et une concentration intense sur des intérêts restreints. Les enfants atteints de TSA présentent un degré élevé de réponse au toucher, à l’odorat, au son et au goût, tandis que la réponse à la douleur et à la température est comparativement faible1. La pénétrance de ce trouble est également différente entre les différents patients souffrant de TSA et, par conséquent, la variabilité augmente.

Le diagnostic clinique actuel des TSA est basé sur l’évaluation comportementale des individus, car il n’existe pas de test génétique commun basé sur des biomarqueurs de confirmation qui couvre toutes les formes de TSA3. Décrypter les bases génétiques et neurophysiologiques serait utile pour cibler les stratégies de traitement. Au cours de la dernière décennie, un grand nombre de recherches ont abouti à l’identification de centaines de gènes qui sont soit supprimés, soit mutés, soit dont les niveaux d’expression sont modifiés chez les patients atteints de TSA. Les recherches en cours mettent l’accent sur la validation de la contribution de ces gènes candidats à l’aide d’organismes modèles comme la souris ou la mouche des fruits, dans lesquels ces gènes sont éliminés ou renversés, suivis de tests de déficits comportementaux de type TSA et d’élucidation des voies génétiques et moléculaires sous-jacentes à l’origine des anomalies. Un modèle murin récapitulant les variations du nombre de copies (CNV) dans les loci chromosomiques humains 16p11.2 montre certains des défauts comportementaux des TSA 4,5,6. L’exposition prénatale à un médicament tératogène, l’acide valproïque (APV), est un autre modèle murin décrivant des traits ressemblant à ceux des TSA humains 7,8. En outre, il existe une gamme de modèles murins qui présentent un autisme associé au syndrome génétique, par exemple, des modèles syndromiques monogéniques causés par des mutations dans Fmr1, Pten, Mecp2, Cacna1c et des modèles non syndromiques monogéniques causés par des mutations dans des gènes comme Cntnap2, Shank, Neurexin ou Neuroligin gènes 5.

La mouche des fruits (Drosophila melanogaster) est un autre organisme modèle important pour l’étude des bases cellulaires, moléculaires et génétiques d’une pléthore de troubles humains9, y compris les TSA. La drosophile et l’homme partagent des processus biologiques hautement conservés aux niveaux moléculaire, cellulaire et synaptique. Les mouches des fruits ont été utilisées avec succès dans des études sur les TSA 10,11,12 pour caractériser les gènes liés aux TSA et déchiffrer leur rôle exact dans la synaptogenèse, la fonction et la plasticité synaptiques, l’assemblage des circuits neuronaux et la maturation ; Les homologues de mouches des gènes associés aux TSA ont joué un rôle dans la régulation du comportement social et/ou répétitif 11,13,14,15,16,17,18,19,20,21. La mouche des fruits a également servi de modèle pour le dépistage des gènes des TSA et de leurs variantes 15,22,23. Le plus grand défi dans la recherche sur les TSA chez les mouches est que, contrairement à d’autres modèles de maladies, il n’existe pas de modèle unique de mouche TSA. Pour comprendre l’impact des mutations ou de l’inactivation d’un gène spécifique de TSA, un chercheur doit valider si les phénotypes comportementaux imitent suffisamment les symptômes des patients atteints de TSA, puis procéder à la compréhension des fondements moléculaires ou physiologiques des phénotypes.

Par conséquent, la détection de phénotypes de type TSA est essentielle à la recherche sur les TSA dans le modèle de mouche. Une poignée de techniques comportementales ont émergé au fil des ans qui nous permettent de détecter des anomalies telles que des déficits dans le comportement/l’interaction sociale, la communication, les comportements répétitifs et la réactivité aux stimuli. De plus, plusieurs modifications et mises à niveau de ces techniques comportementales ont été apportées dans différents laboratoires pour répondre à des exigences spécifiques telles que la mise à l’échelle, l’automatisation des tests, les lectures, la quantification et les méthodes de comparaison. Dans cet article vidéo, les versions les plus basiques de cinq paradigmes comportementaux sont présentées, qui, en combinaison, peuvent être utilisés pour détecter les résultats comportementaux de type TSA de la manière la plus simple.

L’agression est un comportement inné conservé au cours de l’évolution qui affecte la survie et la reproduction24. Le comportement agressif envers les congénères est influencé par la « motivation à la socialisation »25,26 ainsi que par la « communication »27, les deux étant compromis chez les personnes atteintes de TSA. Le comportement agressif est bien décrit chez la drosophile et sa quantifiabilité grâce au test d’agression robuste 28,29,30 et à une base génétique et neurobiologique bien comprise31 en fait un paradigme comportemental approprié 32 pour évaluer le phénotype TSA dans un modèle de mouche. L’agression est influencée par l’isolement social loin d’un environnement social, ce qui conduit à une agressivité accrue ; La même chose a été observée lorsque les mouches mâles sont logées en isolement pendant quelques jours33,34. Un autre test comportemental qui quantifie la sociabilité chez les mouches est le Social Space Assay35, qui mesure les distances entre les voisins les plus proches et les distances entre les mouches dans un petit groupe de mouches, ce qui le rend parfaitement adapté pour tester les rôles des orthologues des gènes TSA chez les mouches 12,21,36,37 ainsi que chez les modèles de mouches TSA induites par l’environnement 38, 39. Planche à billets

Le test de parade nuptiale de la drosophile est un autre paradigme comportemental fréquemment utilisé pour tester l’altération des compétences sociales et de communication lors d’un circuit ou d’une manipulation génétique, y compris les gènes liés à l’autisme 18,19,21,40. Les modèles de comportement répétitifs sont répandus chez les patients atteints de TSA, ce qui est récapitulé chez les mouches par le comportement de toilettage – une série d’actions distinctes et stéréotypées effectuées pour le nettoyage et à d’autres fins. Il a été utilisé avec succès pour tester l’impact des mutations du gène TSA chez les mouches21,41 ainsi que l’exposition aux produits chimiques38,39. De multiples avancées et automatisations dans le test ont été décrites avant 16,41,42,43 ; Ici, nous démontrons le modèle de test le plus basique, qui est facile à adopter et à quantifier.

Les TSA sont connus pour avoir un impact sur la capacité d’accoutumance, d’apprentissage et de mémoire chez certains patients 44,45,46,47,48,49,50, organismes modèles TSA 51,52 et provoquent également des déficits dans différents comportements olfactifs50. L’habituation au saut lumineux de la drosophile a déjà été utilisée pour dépister les gènesTSA 23. L’habituation peut être mesurée par une méthode simple d’habituation olfactive 53,54,55. Nous décrivons la méthode pour induire l’habituation olfactive et analysons le résultat à l’aide d’un test binaire classique basé sur un labyrinthe en Y56 qui peut être utilisé pour détecter les défauts d’accoutumance dans le mutant du gène ASD ou l’inactivation du gène. Pour évaluer si l’impact d’une mutation (ou d’un inactivation génétique) ou d’un traitement pharmacologique sur le comportement d’une mouche équivaut à un phénotype de type TSA, on peut utiliser une combinaison de ces 5 tests décrits ici.

Protocol

Voir le tableau des matériaux pour plus de détails sur tous les matériaux et réactifs utilisés dans ce protocole. 1. Dosage de l’agression Préparation de l’arène de l’essai d’agressionPrenez une plaque standard de 24 puits (figure 1A) et utilisez chaque puits de la plaque comme une seule « arène » (figure 1B) pour l’agression des mouches. Remplissez la moitié de …

Representative Results

Essai d’agressionEn tant que modèle de mouche ASD, les mouches mutantes Fmr1 ont été utilisées63,64. w1118 mâles ont été utilisés comme mouches témoins et Fmr1 trans-hétérozygote Fmr1Δ113M/Fmr1Δ50M57 mouches mâles comme mouches expérimentales ; Les mâles adultes ont été logés dans des tubes d’isolement pendant 5 jours. Des mâles homotypiques (même…

Discussion

La drosophile est utilisée comme un excellent organisme modèle pour la recherche sur les troubles neurologiques humains en raison d’un haut degré de conservation des séquences génétiques entre les gènes de la mouche et de la maladie humaine9. De nombreux paradigmes comportementaux robustes en font un modèle attrayant pour l’étude des phénotypes se manifestant chez les mutants récapitulant les maladies humaines. Comme des centaines de gènes sont impliqués dans les troubles…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Nous sommes immensément reconnaissants à Mani Ramaswami (NCBS, Bangalore) et Baskar Bakthavachalu (IIT Mandi) pour la configuration du test d’accoutumance et de choix d’odeur, à Pavan Agrawal (MAHE) pour ses précieuses suggestions sur le test d’agression, à Amitava Majumdar (NCCS, Pune) pour avoir partagé son prototype de chambre de test de parade nuptiale et ses lignes de mouches mutantes Fmr1 , et à Gaurav Das (NCCS, Pune) pour le partage de la ligne MB247-GAL4. Nous remercions le Bloomington Drosophila Stock Center (BDSC, Indiana, États-Unis), l’Institut national de génétique (NIG, Kyoto, Japon), l’Université hindoue de Banaras (BHU, Varanasi, Inde) et le National Center for Biological Science (NCBS, Bangalore, Inde) pour les lignées de drosophile . Les travaux en laboratoire ont été soutenus par des subventions de SERB-DST (ECR/2017/002963) à AD, une bourse DBT Ramalingaswami attribuée à AD (BT/RLF/Re-entry/11/2016) et un soutien institutionnel de l’IIT Kharagpur, en Inde. SD et SM reçoivent des bourses de doctorat du CSIR-Senior Research Fellowship ; PM reçoit une bourse de doctorat du MHRD, en Inde.

Materials

Aggression arena:
Standard 24-well plate made of transparent polystyrene 12 cm x 8 cm x 2 cm. Diameter of a single well= 18 cm. Sigma-aldrich #Z707791; depth = 1 cm
Transparent plastic/acrylic sheet Alternative: a perforated lid of a cell culture plate
Social Space Assay:
Binder clips 19 mm
Glass sheets and acrylic sheets of customized sizes Thickness = 5 mm
Courtship assay:
Nut and bolt with threading
Perspex sheets of customized shapes i) Lid: A custom-made round transparent Perspex disk (2-3 mm thickness, 70 mm diameter) with one loading hole at the peripheral region and another screw hole at the center (diameter ~ 3 mm for each); ii) A second transparent thicker Perspex disk (3-4 mm thickness, 70 mm diameter), with 6-8 perforations of diameter 15 mm, equidistant from the center; iii) Base: Same as lid except without the loading hole
Grooming assay:
Diffused glass-covered LED panel 10–15-Watt ceiling mountable LED panel
Habituation and Y-maze assay
Climbing chambers x2, Borosilicate glass
Adapter for connecting Y-maze with entry vial Perspex, custom made, measurements in Figure 5A
Clear reagent bottles Borosil #1500017
Gas washing stopper Borosil #1761021
Glass vial OD= 25 mm x Height= 85 mm; Borosilicate Glass
Odorant (Ethyl Butyrate) Merck #E15701
Paraffin wax (liquid) light SRL #18211
Roller clamps Polymed #14098
Silicone tubes OD = 0.6 cm, ID = 0.3 cm; roller clamps for flow control
Vacuum pump Hana #HN-648 (Any aquarium pump with flow direction reversed manually)
Y-maze Borosilicate glass
Y-shaped glass tube (borosilicate glass) Custom made, measurements in Figure 5A
Common items:
Any software for video playback (eg.- VLC media player) https://www.videolan.org/vlc/
Computer for video data analysis
Fly bottles OD= 60 mm x Height= 140 mm; glass/polypropylene
Fly vials OD= 25 mm x Height= 85 mm; Borosilicate Glass
Graph-pad Prism software https://www.graphpad.com/scientific-software/prism/www.graphpad.com/scientific-software/prism/
ImageJ software https://imagej.net/downloads
Timer
Video camera with video recording set up Camcorder or a mobile phone camera will work
For Fly Aspirator:
Cotton Absorbent, autoclaved
Parafilm Sigma-aldrich #P7793
Pipette tips 200 µL or 1000 µL, choose depeding on outer diameter of the silicone tube
Silicone/rubber tube length= 30-50 cm. The tube should be odorless
Composition of Fly food:
Ingredients (amount for 1 L of food)
Agar (8 g) SRL # 19661 (CAS : 9002-18-0)
Cornflour (80 g) Organic, locally procured
D-Glucose (20 g) SRL # 51758 (CAS: 50-99-7)
Propionic acid (4 g) SRL # 43883 (CAS: 79-09-4)
Sucrose (40 g) SRL # 90701 (CAS: 57-50-1)
Tego (Methyl para hydroxy benzoate) (1.25 g) SRL # 60905 (CAS: 5026-62-0)
Yeast Powder (10 g) HIMEDIA # RM027
Fly lines used in the experiments in this study:
Wild type (Canton S or CS) BDSC # 64349
w1118 BDSC # 3605
w[1118]; Fmr1[Δ50M]/TM6B, Tb[+] BDSC # 6930
w[*]; Fmr1[Δ113M]/TM6B, Tb[1] BDSC # 67403
MB247-GAL4 (Gaurav Das, NCCS Pune, India) BDSC # 50742
LN1-GAL4 NP1227, NP consortium, Japan
row-shRNA BDSC # 25971

References

  1. American Psychiatric Association. . American Psychiatric Association DSM-5 Task Force Diagnostic and statistical manual of mental disorders: DSM-5TM, 5th ed. , (2013).
  2. Zeidan, J., et al. Global prevalence of autism: A systematic review update. Autism Res. 15 (5), 778 (2022).
  3. Lordan, R., Storni, C., De Benedictis, C. A. Autism spectrum disorders: diagnosis and treatment. Autism Spectr Disord. , (2021).
  4. Horev, G., et al. Dosage-dependent phenotypes in models of 16p11.2 lesions found in autism. Proc Natl Acad Sci USA. 108 (41), 17076-17081 (2011).
  5. Bey, A. L., Jiang, Y. Overview of mouse models of autism spectrum disorders. Curr Protoc Pharmacol. 66 (1), 1 (2014).
  6. Fetit, R., Price, D. J., Lawrie, S. M., Johnstone, M. Understanding the clinical manifestations of 16p11.2 deletion syndrome: a series of developmental case reports in children. Psychiatr Genet. 30 (5), 136-140 (2020).
  7. Nicolini, C., Fahnestock, M. The valproic acid-induced rodent model of autism. Exp Neurol. 299, 217-227 (2018).
  8. Tartaglione, A. M., Schiavi, S., Calamandrei, G., Trezza, V. Prenatal valproate in rodents as a tool to understand the neural underpinnings of social dysfunctions in autism spectrum disorder. Neuropharmacology. 159, 107477 (2019).
  9. Reiter, L. T., Potocki, L., Chien, S., Gribskov, M., Bier, E. A systematic analysis of human disease-associated gene sequences in Drosophilamelanogaster. Genome Res. 11 (6), 1114-1125 (2001).
  10. Coll-Tane, M., Krebbers, A., Castells-Nobau, A., Zweier, C., Schenck, A. Intellectual disability and autism spectrum disorders "on the fly": Insights from Drosophila. DMM Dis Model Mech. 12 (5), 1-16 (2019).
  11. Tian, Y., Zhang, Z. C., Han, J. Drosophila studies on autism spectrum disorders. Neurosci Bull. 33 (6), 737-746 (2017).
  12. Ueoka, I., Pham, H. T. N., Matsumoto, K., Yamaguchi, M. Autism spectrum disorder-related syndromes: Modeling with Drosophila and rodents. Int J Mol Sci. 20 (17), 1-24 (2019).
  13. Yost, R. T., et al. Abnormal social interactions in a Drosophila mutant of an autism candidate gene: Neuroligin 3. Int J Mol Sci. 21 (13), 1-20 (2020).
  14. Wise, A., et al. Drosophila mutants of the autism candidate gene neurobeachin (rugose) exhibit neuro-developmental disorders, aberrant synaptic properties, altered locomotion, impaired adult social behavior and activity patterns. J Neurogenet. 29 (2-3), 135-143 (2015).
  15. Koemans, T. S., et al. Functional convergence of histone methyltransferases EHMT1 and KMT2C involved in intellectual disability and autism spectrum disorder. PLoS Genet. 13 (10), e1006864 (2017).
  16. Tauber, J. M., Vanlandingham, P. A., Zhang, B. Elevated levels of the vesicular monoamine transporter and a novel repetitive behavior in the Drosophila model of fragile X syndrome. PLoS One. 6 (11), e27100 (2011).
  17. Iyer, J., et al. Pervasive genetic interactions modulate neurodevelopmental defects of the autism-associated 16p11.2 deletion in Drosophilamelanogaster. Nat Commun. 9 (1), 1-19 (2018).
  18. Palacios-Muñoz, A., et al. Mutations in trpγ, the homologue of TRPC6 autism candidate gene, causes autism-like behavioral deficits in Drosophila. Mol Psychiatry. 27 (8), 3328-3342 (2022).
  19. Hahn, N., et al. Monogenic heritable autism gene neuroligin impacts Drosophila social behaviour. Behav Brain Res. 252, 450-457 (2013).
  20. Stessman, H. A. F., et al. Disruption of POGZ is associated with intellectual disability and autism spectrum disorders. Am J Hum Genet. 98 (3), 541-552 (2016).
  21. Hope, K. A., et al. The Drosophila gene sulfateless modulates autism-like behaviors. Front Genet. 10, 574 (2019).
  22. Stessman, H. A. F., et al. Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nat Genet. 49 (4), 515-526 (2017).
  23. Fenckova, M., et al. Habituation learning is a widely affected mechanism in Drosophila models of intellectual disability and autism spectrum disorders. Biol Psychiatry. 86 (4), 294-305 (2019).
  24. Trannoy, S., Chowdhury, B., Kravitz, E. A. Handling alters aggression and "loser" effect formation in Drosophilamelanogaster. Learn Mem. 22 (2), 64-68 (2015).
  25. Anderson, D. J. Circuit modules linking internal states and social behaviour in flies and mice. Nat Rev Neurosci. 17 (11), 692-704 (2016).
  26. Flanigan, M. E., Russo, S. J. Recent advances in the study of aggression. Neuropsychopharmacology. 44 (2), 241-244 (2018).
  27. Sun, Y., et al. Social attraction in Drosophila is regulated by the mushroom body and serotonergic system. Nat Commun. 11 (1), 1-14 (2020).
  28. Nilsen, S. P., Chan, Y. B., Huber, R., Kravitz, E. A. Gender-selective patterns of aggressive behavior in Drosophilamelanogaster. Proc Natl Acad Sci USA. 101 (33), 12342-12347 (2004).
  29. Kravitz, E. A., Fernandez, M. d. e. l. a. P. Aggression in Drosophila. Behav Neurosci. 129 (5), 549-563 (2015).
  30. Chen, S., Lee, A. Y., Bowens, N. M., Huber, R., Kravitz, E. A. Fighting fruit flies: a model system for the study of aggression. Proc Natl Acad Sci USA. 99 (8), 5664-5668 (2002).
  31. Zwarts, L., Versteven, M., Callaerts, P. Genetics and neurobiology of aggression in Drosophila. Fly (Austin). 6 (1), 35-48 (2012).
  32. Mundiyanapurath, S., Certel, S., Kravitz, E. A. Studying aggression in Drosophila (fruit flies). J Vis Exp. (2), e155 (2007).
  33. Agrawal, P., Kao, D., Chung, P., Looger, L. L. The neuropeptide Drosulfakinin regulates social isolation-induced aggression in Drosophila. J Exp Biol. 223 (2), 207407 (2020).
  34. Wang, L., Dankert, H., Perona, P., Anderson, D. J. A common genetic target for environmental and heritable influences on aggressiveness in Drosophila. Proc Natl Acad Sci USA. 105 (15), 5657-5663 (2008).
  35. Simon, A. F., et al. A simple assay to study social behavior in Drosophila: Measurement of social space within a group. Genes Brain Behav. 11 (2), 243-252 (2012).
  36. Corthals, K., et al. Neuroligins Nlg2 and Nlg4 affect social behavior in Drosophilamelanogaster. Front Psychiatry. 8, 113 (2017).
  37. Cao, H., Tang, J., Liu, Q., Huang, J., Xu, R. Autism-like behaviors regulated by the serotonin receptor 5-HT2B in the dorsal fan-shaped body neurons of Drosophilamelanogaster. Eur J Med Res. 27 (1), 1-15 (2022).
  38. Kaur, K., Simon, A. F., Chauhan, V., Chauhan, A. Effect of bisphenol A on Drosophilamelanogaster behavior – A new model for the studies on neurodevelopmental disorders. Behav Brain Res. 284, 77-84 (2015).
  39. Shilpa, O., Anupama, K. P., Antony, A., Gurushankara, H. P. Lead (Pb)-induced oxidative stress mediates sex-specific autistic-like behaviour in Drosophilamelanogaster. Mol Neurobiol. 58 (12), 6378-6393 (2021).
  40. Dockendorff, T. C., et al. Drosophila lacking dfmr1 activity show defects in crcadian output and fail to maintain courtship interest. Neuron. 34 (6), 973-984 (2002).
  41. Andrew, D. R., et al. Spontaneous motor-behavior abnormalities in two Drosophila models of neurodevelopmental disorders. J Neurogenet. 35 (1), 1-22 (2021).
  42. Barradale, F., Sinha, K., Lebestky, T. Quantification of Drosophila grooming behavior. J Vis Exp. (125), e55231 (2017).
  43. Qiao, B., Li, C., Allen, V. W., Shirasu-Hiza, M., Syed, S. Automated analysis of long-term grooming behavior in Drosophila using a k-nearest neighbors classifier. Elife. 7, e34497 (2018).
  44. Webb, S. J., et al. Toddlers with elevated autism symptoms show slowed habituation to faces. Child Neuropsychol. 16 (3), 255-278 (2010).
  45. Kleinhans, N. M., et al. Reduced neural habituation in the amygdala and social impairments in autism spectrum disorders. Am J Psychiatry. 166 (4), 467-475 (2009).
  46. Ethridge, L. E., et al. Reduced habituation of auditory evoked potentials indicate cortical hyper-excitability in Fragile X Syndrome. Transl Psychiatry. 6 (4), e787-e787 (2016).
  47. McDiarmid, T. A., Bernardos, A. C., Rankin, C. H. Habituation is altered in neuropsychiatric disorders-A comprehensive review with recommendations for experimental design and analysis. Neurosci Biobehav Rev. 80, 286-305 (2017).
  48. Kuiper, M. W. M., Verhoeven, E. W. M., Geurts, H. M. Stop making noise! Auditory sensitivity in adults with an autism spectrum disorder diagnosis: physiological habituation and subjective detection thresholds. J Autism Dev Disord. 49 (5), 2116-2128 (2019).
  49. McDiarmid, T. A., et al. Systematic phenomics analysis of autism-associated genes reveals parallel networks underlying reversible impairments in habituation. Proc Natl Acad Sci USA. 117 (1), 656-667 (2020).
  50. Lyons-Warren, A. M., Herman, I., Hunt, P. J., Arenkiel, B. A systematic-review of olfactory deficits in neurodevelopmental disorders: From mouse to human. Neurosci Biobehav Rev. 125, 110-121 (2021).
  51. Kepler, L. D., McDiarmid, T. A., Rankin, C. H. Habituation in high-throughput genetic model organisms as a tool to investigate the mechanisms of neurodevelopmental disorders. Neurobiol Learn Mem. 171, 107208 (2020).
  52. Huang, T. N., Yen, T. L., Qiu, L. R., Chuang, H. C., Lerch, J. P., Hsueh, Y. P. Haploinsufficiency of autism causative gene Tbr1 impairs olfactory discrimination and neuronal activation of the olfactory system in mice. Mol Autism. 10 (1), 1-16 (2019).
  53. Twick, I., Lee, J. A., Ramaswami, M. Chapter 1 – Olfactory habituation in Drosophila-odor encoding and its plasticity in the antennal lobe. Prog Brain Res. 208, 3-38 (2014).
  54. Das, S., et al. Plasticity of local GABAergic interneurons drives olfactory habituation. Proc Natl Acad Sci USA. 108 (36), E646-E654 (2011).
  55. Devaud, J. M., Acebes, A., Ferrús, A. Odor exposure causes central adaptation and morphological changes in selected olfactory glomeruli in Drosophila. J Neurosci. 21 (16), 6274-6282 (2001).
  56. Ayyub, C., Paranjape, J., Rodrigues, V., Siddiqi, O. Genetics of olfactory behavior in Drosophilamelanogaster. J Neurogenet. 6 (4), 243-262 (1990).
  57. Michel, C. I., Kraft, R., Restifo, L. L. Defective neuronal development in the mushroom bodies of Drosophila fragile X mental retardation 1 mutants. J Neurosci. 24 (25), 5798-5809 (2004).
  58. Fernandez, M. P., Trannoy, S., Certel, S. J. Fighting flies: quantifying and analyzing Drosophila aggression. Cold Spring Harb Protoc. 2023 (9), 107985 (2023).
  59. Dankert, H., Wang, L., Hoopfer, E. D., Anderson, D. J., Perona, P. Automated monitoring and analysis of social behavior in Drosophila. Nat Methods. 6 (4), 297-303 (2009).
  60. Simon, A. F., et al. Drosophila vesicular monoamine transporter mutants can adapt to reduced or eliminated vesicular stores of dopamine and serotonin. Genetics. 181 (2), 525-541 (2008).
  61. McNeil, A. R., et al. Conditions affecting social space in Drosophilamelanogaster. J Vis Exp. (105), e53242 (2015).
  62. Schneider, C. A., Rasband, W. S., Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 9 (7), 671-675 (2012).
  63. Drozd, M., Bardoni, B., Capovilla, M. Modeling Fragile X Syndrome in Drosophila. Front Mol Neurosci. 11, 124 (2018).
  64. Trajković, J., et al. Drosophilamelanogaster as a model to study Fragile X-associated disorders. Genes (Basel). 14 (1), 87 (2022).
  65. Gailey, D. A., Jackson, F. R., Siegel, R. W. Male courtship in Drosophila: the conditioned response to immature males and its genetic control. Genetics. 102 (4), 771-782 (1982).
  66. Cannon, R. J. C. Drosophila courtship behaviour. Courtship and Mate-finding Insects. , 1-13 (2023).
  67. von Philipsborn, A. C., Shohat-Ophir, G., Rezaval, C. Single-pair courtship and competition assays in Drosophila. Cold Spring Harb Protoc. 2023 (7), 450-459 (2023).
  68. Keleman, K., Krüttner, S., Alenius, M., Dickson, B. J. Function of the Drosophila CPEB protein Orb2 in long-term courtship memory. Nat Neurosci. 10 (12), 1587-1593 (2007).
  69. Koemans, T. S., et al. Drosophila courtship conditioning as a measure of learning and memory. J Vis Exp. (124), e55808 (2017).
  70. Fitzsimons, H. L., Scott, M. J. Genetic modulation of Rpd3 expression impairs long-term courtship memory in Drosophila. PLoS One. 6 (12), e29171 (2011).
  71. Kubli, E. My favorite molecule. The sex-peptide. BioEssays. 14 (11), 779-784 (1992).
  72. Dierick, H. A. A method for quantifying aggression in male Drosophilamelanogaster. Nat Protoc. 2 (11), 2712-2718 (2007).

Play Video

Cite This Article
Dey, S., Mondal, P., Mandal, S., Sasmal, S., Chakraborty, N., Das, A. Paradigms for Behavioral Assessment in Drosophila Model of Autism Spectrum Disorder. J. Vis. Exp. (211), e66649, doi:10.3791/66649 (2024).

View Video