Summary

用于分析肠道粘膜免疫反应的免疫活性肠芯片模型

Published: May 24, 2024
doi:

Summary

我们的详细方案概述了高级肠芯片模型的创建和使用,该模型模拟具有 3D 结构和各种细胞类型的人类肠粘膜,能够深入分析响应微生物定植的免疫反应和细胞功能。

Abstract

已经开发了一种先进的肠芯片模型,可重建上皮 3D 器官型绒毛样和隐窝样结构。免疫活性模型包括人脐静脉内皮细胞 (HUVEC)、Caco-2 肠上皮细胞、组织驻留巨噬细胞和树突状细胞,它们在组织内自组织,反映了人肠粘膜的特征。该平台的一个独特之处在于它能够整合循环的人类原代免疫细胞,增强生理相关性。该模型旨在研究肠道免疫系统对细菌和真菌定植和感染的反应。由于其扩大的腔体尺寸,该模型提供了多种功能读数,例如渗透分析、细胞因子释放和免疫细胞浸润,并且与上皮细胞层形成的 3D 结构的免疫荧光测量兼容。因此,它提供了对细胞分化和功能的全面见解。在微生理灌注生物芯片平台中,肠道芯片平台已证明其在阐明活微生物群的替代物与人类宿主组织之间的复杂相互作用方面的潜力。

Introduction

器官芯片 (OoC) 系统代表了一种新兴的 3D 细胞培养技术,能够弥合传统 2D 细胞培养和动物模型之间的差距。OoC 平台通常由一个或多个隔室组成,这些隔室包含在各种支架(如膜或水凝胶)上生长的组织特异性细胞1。这些模型能够模拟一个或多个定义的器官型功能。泵能够对细胞培养基进行连续微流控灌流,以去除细胞废物,提供营养和生长因子以改善细胞分化,并重建必要的体内条件。随着免疫细胞的整合,OoC 系统可以在体外模拟人类免疫反应 2。迄今为止,已经提出了广泛的器官和功能单位1。这些系统包括脉管系统3(vaschorue)、肺4(lung)、肝脏2(h)2,5和肠道6(intestine 6)的模型,可用于药物检测5,7和感染研究6,8

我们在这里提出了一个人肠芯片模型,该模型整合了人上皮细胞,形成了绒毛样和隐窝样结构的器官型 3D 地形,并结合了内皮衬里和组织驻留的巨噬细胞。该模型以显微载玻片的形式在微流体灌注的生物芯片中培养。每个生物芯片由两个独立的微流体腔组成。每个腔体由多孔聚对苯二甲酸乙二醇酯 (PET) 膜分为上腔室和下腔室。膜本身也充当细胞在每一侧生长的支架。膜的孔隙使细胞串扰和细胞层之间的细胞迁移成为可能。每个腔室都可以通过两个母鲁尔锁大小的端口进入。或者,一个额外的微型鲁尔锁大小的端口可以提供对上腔室或下腔室的访问(图 1)。

OoC 平台提供了许多可以从单个实验中获得的读数。肠芯片专为结合灌注 3D 细胞培养、流出物分析和荧光显微镜检查而设计,以评估细胞标志物表达、代谢率、免疫反应、微生物定植和感染以及屏障功能 3,6,8。该模型包括组织驻留的免疫细胞和活微生物与宿主组织的直接接触,与其他已发表的模型相比,这是一个优势9。此外,上皮细胞自组织成三维结构,为活微生物群的定植提供生理相关的界面6

Protocol

该方案要求每个生物芯片从健康供体那里获得 ~20 mL 的新鲜血液,以分离原代人单核细胞。所有捐献者都书面知情同意参与这项研究,该研究得到了耶拿大学医院伦理委员会的批准(许可号 2018-1052-BO)。有关材料的详细信息,请参阅 材料表。有关所有解决方案和介质的组成的详细信息,请参阅 表 1。 1. 一般生物芯片处理备注 小?…

Representative Results

这些代表性结果显示了 intestine-on-chip 模型的不同组织层。它们按照方案第 11 节中的说明进行免疫荧光染色。用落射荧光或共聚焦荧光显微镜作为 z 堆栈拍摄图像,并处理为正交投影。有关显微镜设置和软件的详细信息,请参阅 材料表 。 图 5 显示了血管层,一种形成屏障的内皮单层,由 HUVEC 和巨噬细胞组成。对代表性细胞标志物如内皮细胞的 VE-钙粘蛋白和血?…

Discussion

所提出的协议详细介绍了生成免疫活性肠芯片模型的必要步骤。我们描述了特定的技术和可能的读出方法,例如免疫荧光显微镜、细胞因子和代谢物分析、流式细胞术、蛋白质和遗传分析以及通透性测量。

所描述的模型由原代 HUVEC、单核细胞衍生的巨噬细胞和单核细胞衍生的树突状细胞组成,与代表粘液分泌、吸收、肠内分泌和 Paneth 细胞样群体的各个方面的肠上皮细胞 3D ?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了合作研究中心 PolyTarget 1278(项目编号 316213987)对 V.D.W. 和 A.S.M. A.F. 和 A.S.M. 的财政支持,进一步感谢德国卓越战略 – EXC 2051 – 项目 ID 690 390713860 下卓越集群“微宇宙平衡”的财政支持。我们要感谢 Astrid Tannert 和 Jena 生物光子学和成像实验室 (JBIL) 为我们提供他们的共聚焦激光扫描显微镜蔡司 LSM980。 图 1C图 2 是使用 Biorender.com 创建的。

Materials

96-well plate black, clear bottom Thermo Fisher 10000631 Consumables
Acetic acid Roth 3738.4 Chemicals
Alexa Fluor 488 AffiniPure, donkey, anti-mouse IgG (H+L) Jackson Immuno Research 715-545-150 Secondary Antibody Vascular Staining and Epithelial Staining
Alexa Fluor 647 AffiniPure, donkey, anti-rabbit IgG (H+L) Jackson Immuno Research 711-605-152 Secondary Antibody Epithelial Staining
Alexa Fluor 647, donkey, anti-rabbit IgG (H+L) Thermo Fisher Scientific, Invitrogen A31573 Secondary Antibody Vascular Staining
Axiocam ERc5s camera Zeiss 426540-9901-000 Technical equipment
Basal Medium MV, phenol red-free Promocell C-22225 Cell culture consumables
Biochip Dynamic 42 BC002 Microfluidic consumables
BSA fraction V Gibco 15260-037 Cell culture consumables
C2BBe1 (clone of Caco-2) ATCC CRL-2102 Epithelial Cell Source
Chloroform Sigma C2432 Chemicals
CO2 Incubator Heracell 150i Technical equipment
Collagen IV from human placenta Sigma-Aldrich C5533 Cell culture consumables
Coverslips (24 x 40 mm; #1.5) Menzel-Gläser 15747592 Consumables
Cy3 AffiniPure, donkey, anti-goat IgG (H+L) Jackson Immuno Research 705-165-147 Secondary Antibody Vascular Staining
Cy3 AffiniPure, donkey, anti-rat IgG (H+L) Jackson Immuno Research 712-165-150 Secondary Antibody Epithelial Staining
DAPI (4',6-Diamidin-2-phenylindol, Dilactate) Thermo Fisher Scientific, Invitrogen D3571 Vascular and Epithelial Staining
Descosept PUR Dr.Schuhmacher 00-323-100 Cell culture consumables
DMEM high glucose Gibco 41965-062 Cell culture consumables
DMEM high glucose w/o phenol red Gibco 31053028 Cell culture consumables
DPBS (-/-) Gibco 14190-169 Cell culture consumables
DPBS (+/+) Gibco 14040-133 Cell culture consumables
EDTA solution Invitrogen 15575-038 Cell culture consumables
Endothelial Cell Growth Medium Promocell C-22020 Cell culture consumables
Endothelial Cell Growth Medium supplement mix Promocell C-39225 Cell culture consumables
Ethanol 96%, undenatured Nordbrand-Nordhausen 410 Chemicals
Fetal bovine Serum invitrogen 10270106 Cell culture consumables
Fluorescein isothiocyanate (FITC)-dextran (3-5 kDa) Sigma Aldrich FD4-100MG Chemicals
Fluorescent Mounting Medium Dako S3023 Chemicals
Gentamycin (10mg/mL) Sigma Aldrich G1272 Cell culture consumables
GlutaMAX Supplement (100x) Gibco 35050061 Cell culture consumables
Histopaque Sigma-Aldrich 10771 Cell culture consumables
Hoechst (bisBenzimid) H33342 Sigma-Aldrich 14533 Epithelial Staining
Holotransferrin (5mg/mL) Transferrin, Holo, Human Plasma Millipore 616397 Cell culture consumables
Human recombinant GM-CSF Peprotech 300-30 Cell culture consumables
Human recombinant M-CSF Peprotech 300-25 Cell culture consumables
Illumination device Zeiss HXP 120 C Fluorescence Microscope Setup
Laser Scanning Microscope Zeiss CLSM980 Fluorescence Microscope Setup
Lidocain hydrochloride Sigma-Aldrich L5647 Cell culture consumables
Lipopolysaccharide (LPS) Sigma L2630 Cell culture consumables
Loftex Wipes Loftex 1250115 Consumables
Low attachment tubes (PS, 5 mL) Falcon 352052 Consumables
Luer adapter for the top cap (M) Mo Bi Tec M3003 Microfluidic consumables
Male mini luer plugs, row of four,PP, opaque Microfluidic chipshop 09-0556-0336-09 Microfluidic consumables
MEM Non-Essential Amino Acids Solution Gibco 11140 Cell culture consumables
Methanol Roth 8388.2 Chemicals
Microscope Zeiss Axio Observer 5 Fluorescence Microscope Setup
Microscope slides Menzel MZ-0002 Consumables
Monoclonal, mouse, anti-human CD68 Antibody (KP1) Thermo Fisher Scientific, Invitrogen 14-0688-82 Primary Antibody Vascular Staining
Monoclonal, rat, anti-human E-Cadherin antibody (DECMA-1) Sigma-Aldrich, Millipore MABT26 Primary Antibody Epithelial Staining
Multiskan Go plate reader Thermo Fisher 51119300 Technical equipment
Normal donkey serum Biozol LIN-END9010-10 Chemicals
Optical Sectioning Zeiss ApoTome Fluorescence Microscope Setup
Penicillin-Streptomycin (10,000 U/mL) Gibco 15140-122 Cell culture consumables
Plugs Cole Parmer GZ-45555-56 Microfluidic consumables
Polyclonal, goat, anti-human VE-Cadherin Antibody R&D Systems AF938 Primary Antibody Vascular Staining
Polyclonal, rabbit, anti-human Von Willebrand Factor Antibody Dako A0082 Primary Antibody Vascular Staining
Polyclonal, rabbit, anti-human ZO-1 antibody Thermo Fisher Scientific, Invitrogen 61-7300 Primary Antibody Epithelial Staining
Power Supply Microscope Zeiss Eplax Vp232 Fluorescence Microscope Setup
Primovert microscope Zeiss 415510-1101-000 Technical equipment
Reglo ICC peristaltic pump Ismatec ISM4412 Technical equipment
SAHA (Vorinostat) Sigma Aldrich SML0061-25MG Chemicals
Saponin Fluka 47036 Chemicals
S-Monovette, 7.5 mL Z-Gel Sarstedt 01.1602 Consumables
S-Monovette, 9.0 mL K3E Sarstedt 02.1066.001 Consumables
Sodium Pyruvate Gibco 11360-088 Cell culture consumables
Tank 4.5 mL ChipShop 10000079 Microfluidic consumables
Trypane blue stain 0.4% Invitrogen T10282 Cell culture consumables
Trypsin Gibco 11538876 Cell culture consumables
Tubing Dynamic 42 ST001 Microfluidic consumables
Tweezers (Präzisionspinzette DUMONT abgewinkelt Inox08, 5/45, 0,06 mm) Roth K343.1 Consumables
Wheat Germ Agglutinin (WGA) Thermo Fisher Scientific, Invitrogen W32464 Epithelial Staining
X-VIVO 15 Lonza BE02-060F Cell culture consumables, Hematopoietic cell medium
Zellkultur Multiwell Platten, 24 Well, sterile Greiner Bio-One 662 160 Consumables
Zellkultur Multiwell Platten, 6 Well, sterile Greiner Bio-One 657 160 Consumables
Zen Blue Software Zeiss Version 3.7 Microscopy Software

References

  1. Alonso-Roman, R., et al. Organ-on-chip models for infectious disease research. Nat Microbiol. 9 (4), 891-904 (2024).
  2. Fahrner, R., Groger, M., Settmacher, U., Mosig, A. S. Functional integration of natural killer cells in a microfluidically perfused liver on-a-chip model. BMC Res Notes. 16 (1), 285 (2023).
  3. Raasch, M., et al. Microfluidically supported biochip design for culture of endothelial cell layers with improved perfusion conditions. Biofabrication. 7 (1), 015013 (2015).
  4. Deinhardt-Emmer, S., et al. Co-infection with Staphylococcus aureus after primary influenza virus infection leads to damage of the endothelium in a human alveolus-on-a-chip model. Biofabrication. 12 (2), 025012 (2020).
  5. Kaden, T., et al. Generation & characterization of expandable human liver sinusoidal endothelial cells and their application to assess hepatotoxicity in an advanced in vitro liver model. Toxicology. 483, 153374 (2023).
  6. Maurer, M., et al. A three-dimensional immunocompetent intestine-on-chip model as in vitro platform for functional and microbial interaction studies. Biomaterials. 220, 119396 (2019).
  7. Hoang, T. N. M., et al. Invasive aspergillosis-on-chip: A quantitative treatment study of human aspergillus fumigatus infection. Biomaterials. 283, 121420 (2022).
  8. Kaden, T., et al. Modeling of intravenous caspofungin administration using an intestine-on-chip reveals altered Candida albicans microcolonies and pathogenicity. Biomaterials. 307, 122525 (2024).
  9. Shah, P., et al. A microfluidics-based in vitro model of the gastrointestinal human-microbe interface. Nat Commun. 7, 11535 (2016).
  10. Jaffe, E. A., Nachman, R. L., Becker, C. G., Minick, C. R. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest. 52 (11), 2745-2756 (1973).
  11. Mosig, S., et al. Different functions of monocyte subsets in familial hypercholesterolemia: Potential function of cd14+ cd16+ monocytes in detoxification of oxidized ldl. FASEB J. 23 (3), 866-874 (2009).
  12. Peterson, M., Mooseker, M. Characterization of the enterocyte-like brush border cytoskeieton of the c2bbe clones of the human intestinal cell line, caco-2. J Cell Sci. 102, 581-600 (1992).
  13. Shin, W., Hinojosa, C. D., Ingber, D. E., Kim, H. J. Human intestinal morphogenesis controlled by transepithelial morphogen gradient and flow-dependent physical cues in a microengineered gut-on-a-chip. iScience. 15, 391-406 (2019).
  14. Kim, H. J., Ingber, D. E. Gut-on-a-chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr Biol (Camb). 5 (9), 1130-1140 (2013).
  15. Kim, H. J., Huh, D., Hamilton, G., Ingber, D. E. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip. 12 (12), 2165-2174 (2012).
  16. Karra, N., Fernandes, J., James, J., Swindle, E. J., Morgan, H. The effect of membrane properties on cell growth in an ‘airway barrier on a chip’. Organs-on-a-Chip. 5, 10025 (2023).

Play Video

Cite This Article
Feile, A., Wegner, V. D., Raasch, M., Mosig, A. S. Immunocompetent Intestine-on-Chip Model for Analyzing Gut Mucosal Immune Responses. J. Vis. Exp. (207), e66603, doi:10.3791/66603 (2024).

View Video