Summary

Быстрое разделение и отображение активных фибриногенолитических агентов в Sipunculus nudus с помощью электрофореза в фибриноген-полиакриламидном геле

Published: April 19, 2024
doi:

Summary

Здесь мы представляем протокол фибриноген-полиакриламидного гель-электрофореза (PAGE) для быстрого разделения и отображения фибриногенолитических агентов Sipunculus nudus.

Abstract

Фибриногенолитические агенты, которые могут растворять фибриноген напрямую, широко используются в антикоагулянтной терапии. Как правило, идентификация новых фибриногенолитических агентов требует сначала разделения каждого компонента, а затем проверки их фибриногенолитической активности. В настоящее время на стадии разделения в основном используются электрофорез в полиакриламидном геле (PAGE) и хроматография. Между тем, анализ фибриногенных пластин и продукты реакции на основе PAGE обычно используются для демонстрации их фибриногенолитической активности. Однако из-за пространственно-временного разделения этих двух стадий невозможно разделить и отобразить активные фибриногенлитические агенты с одним и тем же гелем. Чтобы упростить процессы разделения и отображения идентификации фибриногенолитических агентов, мы разработали новый метод fibrinogen-PAGE для быстрого разделения и отображения фибриногенолитических агентов арахисовых червей (Sipunculus nudus) в этом исследовании. Этот метод включает в себя получение фибриногена-PAGE, электрофорез, ренатурацию, инкубацию, окрашивание и обесцвечивание. Фибриногенолитическая активность и молекулярная масса белка могут быть обнаружены одновременно. С помощью этого метода мы успешно обнаружили более одного активного фибриногенолитического агента гомогената арахисового червя в течение 6 ч. Кроме того, этот метод fibrinogen-PAGE экономит время и деньги. Кроме того, этот метод может быть использован для изучения фибриногенлитических агентов других организмов.

Introduction

В последние годы, в связи с продолжающимся ростом тромботических заболеваний, тромботические заболевания стали новойсерьезной глобальной проблемой здравоохранения1. В настоящее время антитромботические препараты классифицируются на три группы: антитромбоцитарные агрегирующие препараты, антикоагулянты и тромболитические препараты. Среди них тромболитические препараты, такие как урокиназа (Великобритания), тканевый активатор плазминогена (tPA) и др., являются единственными клинически применяемыми препаратами, способными гидролизовать тромб2. Между тем, разрабатываются более безопасные и эффективные тромболитические препараты путем идентификации новых тромболитических агентов3.

Тем не менее, идентификация новых тромболитических агентов является трудоемкой и трудоемкой процессией, которая в основном включает в себя этапы разделения/очистки и характеристики/проверки. Первый заключается в разделении каждого компонента, а второй в проявлении их фибрино(гено)литической активности 4,5. В предыдущих исследованиях, несмотря на то, что мы успешно выделили новый фибрино(гено)литический фермент (sFE) из арахисового червя (Sipunculus nudus) с помощью аффинной хроматографии и анализа фибрина (огена) 6,7,8, эти процессы являются очень трудоемкими и трудоемкими. Во-первых, необходимо определить, обладают ли гомогенаты арахисового червя фибрино(гено)литической активностью методом фибриновой пластины и продуктами реакции на основе стр.9. Затем необходимо провести серию хроматографий, таких как ионообменная хроматография, гель-фильтрационная хроматография, аффинная хроматография и другие методы для разделения и очистки10,11. Затем снова проводится анализ фибриновой пластины для проверки фибриногенолитической активности каждого выделенного компонента. Наконец, для определения молекулярной массы активных фибриногенолитическихагентов проводят native-PAGE и додецилсульфат натрия (SDS)-PAGE. Поэтому крайне важно быстро отделять и выводить активные фибриногенолитические агенты.

Для быстрого разделения и отображения активных фибриногенолитических агентов в гомогенатах арахисового червя был разработан новый метод фибриноген-ПЕЙДЖ, сочетающий методы ПЕЙДЖ и фибриногенной пластины, т.е. субстраты фибриногенолитических агентов фибриногена были добавлены в нативный гель ПЕЙДЖ. После native-PAGE компоненты были разделены по их молекулярной массе. Между тем, каждый активный фибриногенолитический компонент может быть отображен путем окрашивания. С помощью этого метода мы успешно обнаружили более одного активного фибриногенлитического агента гомогената арахисового червя в течение 6 ч. Кроме того, этот метод fibrinogen-PAGE экономит время и деньги. Кроме того, этот метод может быть использован для изучения фибриногенлитических агентов других организмов.

Protocol

1. Гомогенат арахисового червя Добавьте в гомогенизатор 50 г арахисовых червей и 150 мл физиологического раствора. Гомогенизация при 24000 об/мин в течение 60 с.ПРИМЕЧАНИЕ: Повторите 3 раза. Центрифугируйте гомогенат при 9710 x g в течение 30 минут…

Representative Results

После электрофореза все полосы маркера были четко отображены. На 1x полосах загрузки SDS-PAGE была только полоса 10 кДа (бромфенольный синий). В образцах sFE и арахисового червя не было обнаружено каких-либо наблюдаемых полос (Рисунок 1). Несмотря на то, что пол?…

Discussion

sFE – это новый фибрино(гено)литический фермент, выделенный из арахисовых червей нашей командой ранее 3,6,8,13. Тем не менее, процессы идентификации sFE были трудоемкими и трудоемкими, включая определение …

Disclosures

The authors have nothing to disclose.

Acknowledgements

Это исследование финансировалось Научно-техническим бюро города Сямынь (No 3502Z20227197), Бюро науки и технологий провинции Фуцзянь (No 2019J01070; No 2022J01311) и проект «Инновации и предпринимательство высокого уровня» Плана науки и техники Цюаньчжоу (No 2022C015R). Мы благодарим Фуцай Вана (Университет Хуацяо) и Лэй Туна (Университет Хуацяо) за их техническую помощь.

Materials

1  M Tris-HCl (pH 6.8) Solarbio T1020
1.5 M Tris-HCl (pH 8.8) Solarbio T1010
30% Acrylamide/Bis-acrylamide Biosharp BL513B
Ammonium persulfate XiLONG SCIENTIFIC 7727-54-0
Beaker PYREX 2-9425-02
Centrifuge Tube (1.5 mL) Biosharp BS-15-M
Constant Temperature Incubator JINGHONG JHS-400
Coomas Brillant Blue Stainning solution Beyotime P0017F
Electronic Analytical Balance DENVER TP-213
Fibrinogen Solarbio F8051
Gel loading pipette tips, Bulk Biosharp BS-200-GTB
Homogenizer AHS ATS-1500
Horizontal rotation oscillator NuoMi NMSP-600
Milli-Q Reference Millipore Z00QSV0CN
Mini-PROTEAN Tetra Cell BIO-RAD 165-8000~165-8007
N,N,N',N'-Tetramethylethylenediamine Sigma T9281
Pipette Tip (1 mL) Axygene T-1000XT-C
Pipette Tip (10 µL) Axygene T-10XT-C
Pipette Tip (200 µL) Axygene T-200XT-C
Pipettor (1 mL) Thermo Fisher Scientific ZY18723
Pipettor (10µL) Thermo Fisher Scientific ZX98775
Pipettor (200 µL) Thermo Fisher Scientific ZY20280
Pipettor (50 µL) Thermo Fisher Scientific ZY15331
Refrigerated Centrifuge cence H1650R
Sodium dodecyl sulfate Sigma-Aldrich V900859
Tris Solarbio T8060
Tris-HCl Solarbio T8230
Triton X-100 Solarbio T8200

References

  1. Bikdeli, B., et al. COVID-19 and thrombotic or thromboembolic disease: Implications for prevention, antithrombotic therapy, and follow-up. J Am Coll Cardiol. 75 (23), 2950-2973 (2020).
  2. Tsivgoulis, G., et al. Thrombolysis for acute ischaemic stroke: current status and future perspectives. Lancet Neurol. 22 (5), 418-429 (2023).
  3. Tang, M., Hu, C., Lin, H., Yan, H. Fibrinolytic drugs induced hemorrhage: mechanisms and solutions. Blood Coagul Fibrinolysis. 34 (5), 263-271 (2023).
  4. Lu, M., et al. Purification, characterization, and chemical modification of Bacillus velezensis SN-14 fibrinolytic enzyme. Int J Biol Macromol. 177, 601-609 (2021).
  5. Abu-Tahon, M. A., Abdel-Majeed, A. M., Ghareib, M., Housseiny, M. M., Abdallah, W. E. Thrombolytic and anticoagulant efficiencies of purified fibrinolytic enzyme produced from Cochliobolus hawaiiensis under solid-state fermentation. Biotechnol Appl Biochem. 70 (6), 1954-1971 (2023).
  6. Lin, W., Lin, H., Xin, P., Yan, H., Kang, B., Tang, M. A Comprehensive approach to analyze the cell components of cerebral blood clots. J Vis Exp. (197), e65791 (2023).
  7. Tang, M., Lin, H., Hu, C., Yan, H. Affinity purification of a fibrinolytic enzyme from Sipunculus nudus. J Vis Exp. (196), e65631 (2023).
  8. . Plasmin affinity purification method based on agarose gel and plasmin and application thereof Available from: https://patents.google.com/patent/CN116103270A/en?oq=CN202310108470 (2023)
  9. Walton, P. L. An improved fibrin plate method for the assay of plasminogen activators. Clinica Chimica Acta. 13 (5), 680-684 (1966).
  10. Ngere, J. B., Ebrahimi, K. H., Williams, R., Pires, E., Walsby-Tickle, J., McCullagh, J. S. O. Ion-exchange chromatography coupled to mass spectrometry in life science, environmental, and medical research. Anal Chem. 95 (1), 152-166 (2023).
  11. Kato, S., Takeuchi, K., Iwaki, M., Miyazaki, K., Honda, K., Hayashi, T. Chitin- and streptavidin-mediated affinity purification systems: A screening platform for enzyme discovery. Angew Chem Int Ed Engl. 62 (31), e202303764 (2023).
  12. Sharma, N., Sharma, R., Rajput, Y. S., Mann, B., Singh, R., Gandhi, K. Separation methods for milk proteins on polyacrylamide gel electrophoresis: Critical analysis and options for better resolution. International Dairy Journal. 114, 104920 (2021).
  13. . Preparation and application of natural fibrinolytic enzyme from peanut worm Available from: https://patents.google.com/patent/CN109295042A/en (2019)
This article has been published
Video Coming Soon
Keep me updated:

.

Cite This Article
Kang, B., Hu, C., Lin, H., Yan, H., Wei, C., Tang, M. Rapid Separation and Display of Active Fibrinogenolytic Agents in Sipunculus nudus through Fibrinogen-Polyacrylamide Gel Electrophoresis. J. Vis. Exp. (206), e66536, doi:10.3791/66536 (2024).

View Video