Summary

Pseudomonas syringae pvに対する気孔応答の直接観察と自動測定。トマトシロイヌナズナのDC3000

Published: February 09, 2024
doi:

Summary

ここでは、 シロイヌナズナの細菌侵入に対する気孔応答の直接観察と自動測定のための簡単な方法を紹介します。この方法では、ポータブル気孔イメージングデバイスと、デバイスによってキャプチャされた葉の画像用に設計された画像解析パイプラインを活用します。

Abstract

気孔は、植物の葉の表皮に見られる微細な気孔です。気孔開口部の調節は、光合成のための二酸化炭素の取り込みと水分損失のバランスをとるだけでなく、細菌の侵入を制限するためにも極めて重要です。植物は微生物を認識すると気孔を閉じますが、病原菌、 Pseudomonas syringae pv. トマト DC3000(Pto)、閉じた気孔を再度開いて、葉の内部にアクセスします。細菌の侵入に対する気孔の反応を評価するための従来のアッセイでは、葉の表皮の皮、葉のディスク、または剥離した葉を細菌懸濁液に浮かせ、気孔を顕微鏡で観察した後、気孔の開口部を手動で測定します。しかし、これらのアッセイは煩雑であり、植物に付着した葉の自然な細菌侵入に対する気孔反応を反映していない可能性があります。最近では、葉を植物から切り離さずにつまんで気孔を観察できる携帯型イメージングデバイスや、撮影した葉の画像から気孔の開口を自動計測するディープラーニングによる画像解析パイプラインを開発しました。ここでは、これらの技術的進歩に基づいて、 シロイヌナズ ナの細菌侵入に対する気孔応答を評価する新しい方法を紹介します。この手法は、自然感染過程を模倣した Pto の噴霧接種、携帯型イメージングデバイスを用いた Pto接種植物の葉上の気孔の直接観察、画像解析パイプラインによる気孔開口の自動測定の3つの簡単なステップで構成されています。この方法は、自然な植物と細菌の相互作用を厳密に模倣した条件下で、 PTO 浸潤中の気孔の閉鎖と再開を実証するために成功裏に使用されました。

Introduction

気孔は、植物の葉やその他の地上部の表面にある一対のガードセルに囲まれた微細な気孔です。絶え間なく変化する環境下では、植物が光合成に必要な二酸化炭素の取り込みを制御し、蒸散による水分の損失を犠牲にして、気孔開口部の調節が中心となります。このように、気孔開口の定量化は、植物の環境適応を理解するのに役立っています。しかし、気孔の開口を定量化することは、顕微鏡で撮影した葉の画像から気孔孔を見つけて測定するのに人手がかかるため、本質的に時間と煩雑さがあります。これらの制限を回避するために、気孔生物学の研究に広く使用されているモデル植物であるシロイヌナズナの気孔開口の定量化を容易にするためのさまざまな方法が開発されています1,2,3,4,5,6。例えば、気孔コンダクタンスの指標として蒸散速度を測定するために、ポロメーターを使用することができる。ただし、この方法では、気孔コンダクタンスを決定する気孔数と開口部に関する直接的な情報は得られません。いくつかの研究では、蛍光アクチンマーカー、蛍光色素、または細胞壁自家蛍光を使用して気孔孔を強調する共焦点顕微鏡技術が使用されています1,2,3,4,5。これらのアプローチは気孔の検出を容易にしますが、共焦点顕微鏡施設の運用と顕微鏡サンプルの調製の両方にかかるコストが、日常的なアプリケーションの障害となる可能性があります。Saiらによる画期的な研究で、A. thalianaの表皮剥離の明視野顕微鏡画像から気孔開口部を自動的に測定するディープニューラルネットワークモデルが開発されました6。しかし、このイノベーションは、顕微鏡観察のために表皮皮を調製する作業から研究者を免除するものではありません。最近、A. thalianaの葉をつまんで気孔を観察できる携帯型撮像装置と、その装置で撮影した葉の画像から気孔の開口を自動計測する深層学習による画像解析パイプラインを開発することで、この課題を克服した7。

気孔は、細菌性病原体に対する植物の自然免疫に寄与します。この免疫応答の鍵となるのは、細菌の病原体が増殖して病気を引き起こす葉の内部への微細な細孔からの細菌の侵入を制限する気孔閉鎖です8。気孔閉鎖は、ある種の微生物によく見られる免疫原性分子である微生物関連分子パターン(MAMP)が、原形質膜局在パターン認識受容体(PRR)によって認識されると誘導されます9。flg22として知られる細菌の鞭毛の22アミノ酸エピトープは、PRR FLS2 10による認識を通じて気孔閉鎖を誘導する典型的なMAMPPです10。その対策として、Pseudomonas syringae pv.トマトDC3000(Pto)およびXanthomonas campestris pv。膀胱、気孔9,11,12を再開するために病原性メカニズムを進化させました。細菌性病原体に対するこれらの気孔応答は、従来、葉の表皮剥離、葉の円盤、または剥離した葉のいずれかを細菌懸濁液上に浮かべ、その後、気孔を顕微鏡で観察した後、気孔の開口部を手動で測定するアッセイで解析されてきました。しかし、これらのアッセイは煩雑であり、植物に付着した葉に生じる自然細菌の侵入に対する気孔応答を反映していない可能性があります。

ここでは、自然な植物と細菌の相互作用を厳密に模倣した条件下で、Pto浸潤中の気孔の閉鎖と再開を調査するための簡単な方法が提示されます。この方法では、Ptoを接種した植物に付着した葉のA. thaliana stomataを直接観察するポータブルイメージングデバイスと、気孔の開口部を自動測定するための画像解析パイプラインを活用します。

Protocol

1.植物を育てる 休眠状態を打破するには、 A. thaliana (Col-0)の種子を脱イオン水に再懸濁し、暗所で4°Cで4日間インキュベートします。 土に種を蒔き、白色蛍光灯を備えたチャンバーで育てます。生育条件は、温度22°C、光強度6,000ルクス(約100μmol/m2/s)を10時間、相対湿度60%に維持してください。 必要に応じて、液体肥料で植物に水をやります。…

Representative Results

Ptoの噴霧接種後、接種した植物に付着した葉の気孔を携帯型気孔イメージング装置で直接観察した。手動および自動測定を使用して、同じ葉の画像を使用して、約60気孔の幅と長さの比率を取ることにより、気孔の開口部を計算しました。手動および自動測定では、接種後1時間(hpi)で模擬接種した植物と比較して、Pto接種植物の気孔開口部の減少が一貫して示され(<strong class="xfig…

Discussion

以前の研究では、表皮の皮、葉の円盤、または剥離した葉を使用して、細菌の侵入に対する気孔の反応を調査しました9,11,12。これに対し、本研究で提案する手法は、携帯型気孔イメージング装置を用いて、Ptoを噴霧接種した後、植物に付着した葉の気孔を直接観察し、細菌の侵入の自然条件を模倣するものです。?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

「植物微生物ホロビオントの集合体による植物適応形質の共創」研究プロジェクトのメンバーの皆様に感謝いたします。本研究は、科学研究費補助金学術変革領域研究(21H05151、21H05149、Y.T.、21H05152、Y.T.)および科学研究費補助金挑戦的萌芽研究(22K19178、A.M.)の支援を受けて行われました。

Materials

Agar Nakarai tesque 01028-85
Airbrush kits ANEST IWATA MX2900 Accessory kits for SPRINT JET
Biotron Nippon Medical & Chemical Instruments LPH-411S Plant Growth Chamber with white fluorescent light
Glycerol Wako 072-00626
Half tray Sakata 72000113 A set of tray and lid
Hyponex Hyponex No catalogue number available Dilute the solution of Hyponex at a ratio of 1:2000 in deionized water for watering plants
Image J Natinal Institute of Health Download at https://imagej.nih.gov/ij/download.html Used for manual measurement of stomatal aperture
K2HPO4 Wako 164-04295
KCl Wako 163-03545
KOH Wako 168-21815 For MES-KOH
MES Wako 343-01621 For MES-KOH
Portable stomatal imaging device Phytometrics Order at https://www.phytometrics.jp/ Takagi et al.(2023) doi: 10.1093/pcp/pcad018.
Rifampicin Wako 185-01003 Dissolve in DMSO
Silwet-L77 Bio medical science BMS-SL7755 silicone surfactant used in spray inoculation
SPRINT JET ANEST IWATA IS-800 Airbrush used for spray inoculation
SuperMix A Sakata seed 72000083 Mix with Vermiculite G20 in equal proportions for preparing soil
Tryptone Nakarai tesque 35640-95
Vermiculite G20 Nittai No catalogue number available Mix with Super Mix A in equal proportions for preparing soil
White fluorescent light NEC FHF32EX-N-HX-S Used for Biotron

References

  1. Shimono, M., Higaki, T., Kaku, H., Shibuya, N., Hasezawa, S., Day, B. Quantitative evaluation of stomatal cytoskeletal patterns during the activation of immune signaling in Arabidopsis thaliana. PLoS One. 11, e0159291 (2016).
  2. Bourdais, G., et al. The use of quantitative imaging to investigate regulators of membrane trafficking in Arabidopsis stomatal closure. Traffic. 20 (2), 168-180 (2019).
  3. Higaki, T., Kutsuna, N., Hasezawa, S. CARTA-based semi-automatic detection of stomatal regions on an Arabidopsis cotyledon surface. Plant Morphology. 26 (1), 9-12 (2014).
  4. Eisele, J. F., Fäßler, F., Bürgel, F., Chaban, C. A. A rapid and simple method for microscopy-based stomata analyses. PLoS One. 11, e0164576 (2016).
  5. Chitraker, R., Melotto, M. Assessing stomatal response to live bacterial cells using whole leaf imaging. Journal of Visualized Experiments. 44, 2185 (2010).
  6. Sai, N., et al. StomaAI: an efficient and user-friendly tool for measurement of stomatal pores and density using deep computer vision. New Phytologist. 238 (2), 904-915 (2023).
  7. Takagi, M., et al. Image-based quantification of Arabidopsis thaliana stomatal aperture from leaf images. Plant and Cell Physiology. pcad018, (2023).
  8. Melotto, M., Zhang, L., Oblessuc, P. R., He, S. Y. Stomatal defense a decade later. Plant Physiology. 174 (2), 561-571 (2017).
  9. Melotto, M., Underwood, W., Koczan, J., Nomura, K., He, S. Y. Plant stomata function in innate immunity against bacterial invasion. Cell. 126 (5), 969-980 (2006).
  10. Zeng, W., He, S. A prominent role of the flagellin receptor FLAGELLIN-SENSING2 in mediating stomatal response to Pseudomonas syringae pv tomato DC3000 in Arabidopsis. Plant Physiology. 153 (3), 1188-1198 (2010).
  11. Zheng, X. Y., et al. Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host and Microbe. 11 (6), 587-596 (2012).
  12. Raffeiner, M., et al. The Xanthomonas type-III effector XopS stabilizes CaWRKY40a to regulate defense responses and stomatal immunity in pepper (Capsicum annuum). The Plant Cell. 34 (5), 1684-1708 (2022).
  13. Munemasa, S., Hauser, F., Park, J., Waadt, R., Brandt, B., Schroeder, J. I. Mechanisms of abscisic acid-mediated control of stomatal aperture. Current Opinion in Plant Biology. 28, 154-162 (2015).
  14. Förster, S., et al. Wounding-induced stomatal closure requires jasmonate-mediated activation of GORK K+ channels by a Ca2+ sensor-kinase CBL1-CIPK5 complex. Developmental Cell. 48 (1), 87-99 (2018).
  15. Cheng, Y. T., Zhang, L., He, S. Y. Plant-microbe interactions facing environmental challenge. Cell Host and Microbe. 26 (2), 183-192 (2019).

Play Video

Cite This Article
Hirata, R., Takagi, M., Toda, Y., Mine, A. Direct Observation and Automated Measurement of Stomatal Responses to Pseudomonas syringae pv. tomato DC3000 in Arabidopsis thaliana. J. Vis. Exp. (204), e66112, doi:10.3791/66112 (2024).

View Video